K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2017

Ta có biểu thức (x-2014)^2014+(y-2015)2014=0

suy ra (X-2014)^2014=0 suy ra x=2014

suy ra (y-2015)^2014=0 suy ra y=2015

16 tháng 12 2017

Tick minh nha

24 tháng 12 2016

Câu hỏi của mk giống bn. Hỏi xong mk mới thấy đó

bucminh

24 tháng 12 2016

Á chết, ấn nhầm rồi phải ở trong khanhhuyen6a5 chớ

11 tháng 8 2020

bạn vào thống kê hỏi đáp xem hình ảnh

13 tháng 9 2021

P(x) = (x - a) (x- a - 2015). g(x) => P(x) chẵn với mọi x

Q(x) = (x - 2014) h(x) + 2016 -> Q(P(x)) = (P(x) - 2014 ).H(P(x)) + 2016 chia hết cho 2 nên Q(P(x) = 1 sẽ không thể có nghiêm nguyên

 

NV
4 tháng 10 2019

\(2x^2+2y^2+2z^2=2xy+2yz+2zx\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\) \(\Rightarrow x=y=z\)

\(A=\left(2015-2014\right)\left(2014-2013\right)\left(2013-2012\right)=1\)

2 tháng 3 2023

f(0)=2014=a.0^2+b.0+c=c => c=2014

f(1)=2015= a.1^2+b.1+c = a+b+c=a+b+2014 => a+b=2015-2014=1 (*)

f(-1)=2017=a.(-1)^2+b.(-1)+c= a-b+c=a-b+2014 =>a-b=2017-2014=3(**)

từ (*) và (**) ta có hệ pt và tính được a=2 và b= -1

=> f(-2) = 2.(-2)^2 + (-1).(-2) +2014=2024

2 tháng 3 2023

F(0) = a.02 + b. 0 + c = 2014 => c = 2014

F(1) = a.12 + b. 1+ 2014 =  2015          =>   a + b = 2015 - 2014 = 1

F(-1) = a.(-1)2 + b.(-1) + 2014 = 2017    = > a - b = 2017 - 2014 = 3

Cộng vế cho vế ta được :        2a  = 1 + 3 = 4=> a = 4/2 =2

                                                  thay a = 2 vào a + b = 1 ta có 

                                                 2 + b = 1 => b = -1

F(x) = 2x2 - x + 2014 

Vậy F(-2) = 2. (-2)2 - (-2) + 2014 = 2024 

3 tháng 7 2018

\(32,5.2014+28,3.2,7.2014-108,91.2014\)

\(=2014\left(32,5+28,3.2,7-108,91\right)\)

\(=2014.\left(32.5+76,41-108,91\right)\)

\(=2014.\left(108,91-108,91\right)\)

\(=2014.0=0\)

NV
10 tháng 4 2019

3/

\(\frac{sin2x-sinx}{1-cosx+cos2x}=\frac{2sinxcosx-sinx}{1-cosx+2cos^2x-1}=\frac{sinx\left(2cosx-1\right)}{cosx\left(2cosx-1\right)}=\frac{sinx}{cosx}=tanx\)

4/

\(\left(\frac{sinx+cotx}{1+sinx.tanx}\right)^{2014}=\left(\frac{sinx+\frac{1}{tanx}}{1+sinxtanx}\right)^{2014}=\left(\frac{sinxtanx+1}{tanx\left(sinxtanx+1\right)}\right)^{2014}\)

\(=\left(\frac{1}{tanx}\right)^{2014}=cot^{2014}x\)

\(\frac{sin^{2014}x+cot^{2014}x}{1+\left(sinx.tanx\right)^{2014}}=\frac{sin^{2014}x+\frac{1}{tan^{2014}x}}{1+\left(sinx.tanx\right)^{2014}}=\frac{\left(sinxtanx\right)^{2014}+1}{tan^{2014}x\left[\left(sinxtanx\right)^{2014}+1\right]}\)

\(=\frac{1}{tan^{2014}x}=\left(\frac{1}{tanx}\right)^{2014}=cot^{2014}x\)

\(\Rightarrow\left(\frac{sinx+cotx}{1+sinx.tanx}\right)^{2014}=\frac{sin^{2014}x+cot^{2014}x}{1+\left(sinx.tanx\right)^{2014}}\)