Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/
\(\frac{sin2x-sinx}{1-cosx+cos2x}=\frac{2sinxcosx-sinx}{1-cosx+2cos^2x-1}=\frac{sinx\left(2cosx-1\right)}{cosx\left(2cosx-1\right)}=\frac{sinx}{cosx}=tanx\)
4/
\(\left(\frac{sinx+cotx}{1+sinx.tanx}\right)^{2014}=\left(\frac{sinx+\frac{1}{tanx}}{1+sinxtanx}\right)^{2014}=\left(\frac{sinxtanx+1}{tanx\left(sinxtanx+1\right)}\right)^{2014}\)
\(=\left(\frac{1}{tanx}\right)^{2014}=cot^{2014}x\)
\(\frac{sin^{2014}x+cot^{2014}x}{1+\left(sinx.tanx\right)^{2014}}=\frac{sin^{2014}x+\frac{1}{tan^{2014}x}}{1+\left(sinx.tanx\right)^{2014}}=\frac{\left(sinxtanx\right)^{2014}+1}{tan^{2014}x\left[\left(sinxtanx\right)^{2014}+1\right]}\)
\(=\frac{1}{tan^{2014}x}=\left(\frac{1}{tanx}\right)^{2014}=cot^{2014}x\)
\(\Rightarrow\left(\frac{sinx+cotx}{1+sinx.tanx}\right)^{2014}=\frac{sin^{2014}x+cot^{2014}x}{1+\left(sinx.tanx\right)^{2014}}\)
Ta có biểu thức (x-2014)^2014+(y-2015)2014=0
suy ra (X-2014)^2014=0 suy ra x=2014
suy ra (y-2015)^2014=0 suy ra y=2015
TH1: |x-2|^2014=0; |x-3|^2014=1
=>x-2=0 và |x-3|=1
=>x=2
TH2: |x-2|^2014=1; |x-3|^2014=0
=>x=3
Câu trả lời là chúng ta không thể ghép các ô vuông 3x3 và 4x4 để được hình vuông 2014x2014.
Vì nếu giả sử ghép được. Sau khi ghép ta tô màu các cột của hình vuông 2014x2014 như sau:
Cột thứ nhất tô màu đỏ; cột thứ hai tô màu xanh, cột thứ ba tô màu vàng, rồi lặp lại các màu này: cột thứ tư màu đỏ, cột thứ năm màu xanh, cột thứ sáu màu vàng, v.v. và cột cuối cùng (cột 2014) là màu đỏ (vì 2014 chia cho 3 dư 1).
Ta thấy số ô màu đỏ nhiều hơn số ô màu xanh là 2014 ô (đúng bằng số ô của cột cuối cùng).
Ta có nhận xét:
- Các ô trên các miếng ghép 3x3 thì có số lượng các màu như nhau (số ô màu đỏ = số ô màu xanh = số ô màu vàng).
- Các ô trên các miếng ghép 4x4 thì có thể có: màu đỏ hơn màu xanh 4 ô hoặc màu đỏ bằng màu xanh hoặc màu đỏ ít hơn màu xanh 4 ô. Có nghĩa là hiệu giữa số ô đỏ và xanh chia hết cho 4.
Từ đó suy ra hiệu số ô màu đỏ và số ô màu xanh trên tất cả các miếng ghép 3x3 và 4x4 đều chia hết cho 4. Điều này mâu thuẫn với số ô màu đỏ nhiều hơn số ô màu xanh là 2014 ô (vì 2014 không chia hết cho 4).
\(\sqrt{2013-\sqrt{x-1}}=2014-x\)
⇔ \(\left\{{}\begin{matrix}\sqrt{\dfrac{2014-x}{2013+\sqrt{x-1}}}=2014-x\\x\ge1\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}\sqrt{2014-x}.\left(\dfrac{1}{2013+\sqrt{x-1}}-1\right)=0\\x\in\left[1;2014\right]\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}\left[{}\begin{matrix}\dfrac{1}{2013+\sqrt{x-1}}=1\\x=2014\end{matrix}\right.\\x\in\left[1;2014\right]\end{matrix}\right.\)
⇔ x = 2014
Vậy S = {2014}
a)\(\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{3}{x\left(x^4+x^2+1\right)}\left(1\right)\)
ĐK:\(x\ne0\)
\(\left(1\right)\Leftrightarrow\dfrac{x^3+1-\left(x^3-1\right)}{\left(x^2+1+x\right)\left(x^2+1-x\right)}=\dfrac{3}{x\left(x^4+x^2+1\right)}\\ \Leftrightarrow\dfrac{2}{\left(x^2+1\right)^2-x^2}=\dfrac{3}{x\left(x^4+x^2+1\right)}\\ \Leftrightarrow\dfrac{2x-3}{x\left(x^4+x^2+1\right)}=0\Rightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\left(TM\right)\)
\(\dfrac{9-x}{2009}+\dfrac{11-x}{2011}=2\Leftrightarrow\left(\dfrac{9-x}{2009}-1\right)+\left(\dfrac{11-x}{2011}-1\right)=0\Leftrightarrow\dfrac{-2000-x}{2009}+\dfrac{-2000-x}{2011}=0\\ \Leftrightarrow\left(-2000-x\right)\left(\dfrac{1}{2009}+\dfrac{1}{2011}\right)=0\Rightarrow x=-2000\)
\(32,5.2014+28,3.2,7.2014-108,91.2014\)
\(=2014\left(32,5+28,3.2,7-108,91\right)\)
\(=2014.\left(32.5+76,41-108,91\right)\)
\(=2014.\left(108,91-108,91\right)\)
\(=2014.0=0\)