K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2017

-Xét tam giác vuông BDA và tam giác vuông BDC có:

ABD = CBD

BD: cạnh chung

=> tam giác BDA = tam giác BDC

-Ta có: góc G = góc H

góc FIG = góc EIH

Mà F + G + FIG = E + H + EIH = 1800

=> góc F = góc E

Xét tam giác IFG và tam giác IEH có:

IF = IE (gt)

FIG = EIH (gt)

góc F = góc E (cmt)

=> tam giác IFG = tam giác IEH

18 tháng 4 2018

+ ΔABD = ΔCBD (g.c.g) vì:

∠ABD = ∠CBD (gt)

BD chung

∠ADB = ∠BDC (= 90o)

+ Ta có: ∠FGI = ∠IHE ( giả thiết). Mà hai góc này ở vị trí so le trong nên: FG // HE

⇒ ∠GFI = ∠IEH ( hai góc so le trong).

*) Khi đó: ΔGIF = ΔHIE (g.c.g) vì:

∠GFI = ∠IEH ( chứng minh trên)

FI = IE ( giả thiết)

∠GIF = ∠EIH (hai góc đối đỉnh)

7 tháng 9 2018

Có ba cặp tam giác bằng nhau:

ΔABD=ΔACE

ΔBEC=ΔCDB

ΔBEH=ΔCDH

13 tháng 10 2017

Các tam giác = nhau là :

\(\Delta ABD\)\(\Delta BDC\)

\(\Delta BEH\)\(\Delta CDH\)

\(\Delta AEC\)\(\Delta BEC\)

Tick minh ha

16 tháng 1 2021

Hình đâu bạn nhỉ ?

19 tháng 1 2019

- Xem hình 63)

Ta có:

Giải bài 10 trang 111 Toán 7 Tập 1 | Giải bài tập Toán 7

Và AB = MI; AC = IN; BC = MN

Nên ΔABC = ΔIMN

QUẢNG CÁO

- Xem hình 64)

ΔPQR có:

Giải bài 10 trang 111 Toán 7 Tập 1 | Giải bài tập Toán 7

Và QH = RP, HR = PQ, QR cạnh chung

Nên ΔHQR = ΔPRQ

29 tháng 1 2021

a) Ta có: EF//BC(gt) =>\(\left\{{}\begin{matrix}\text{^EOB = ^OBC (SLT)}\\\text{ ^FOC = ^OCB (SLT)}\\\text{^AEF = ^B (Đồng vị)}\\\text{^AFE = ^C (Đồng vị)}\end{matrix}\right.\)

Có: ^OBC = ^OBA ( BF là phân giác ^B)

mà:  ^EOB = ^OBC (cmt)

=> ^EOB = ^OBA => tam giác EBO cân tại E

Có: ^OCA = ^OCB ( BF là phân giác ^B)

mà:  ^FOC = ^OCB (cmt)

=> ^FOC = ^OCA => tam giác FCO cân tại E

Ta có: ^AEF = ^B (cmt)

           ^AFE = ^C (cmt)

Mà ^B = ^C (tam giác ABC cân tại A)

=> ^AEF =  ^AFE => tam giác AEF cân tại A

Có : ^ABF = ^CBF =  \(\dfrac{1}{2}\) ^B ( BF là phân giác ^B)

       ^ACE = ^BCE = \(\dfrac{1}{2}\) ^B ( CF là phân giác ^C)

mà : ^B = ^C (tam giác ABC cân tại A)

=> ^ACE = ^ABF = ^CBF = ^BCE

Xét tg OBC có: ^OBC = ^OCB (^CBF = ^BCE) => tg OBC cân tại O

Xét tam giác FCO và tam giác EBO có:

^FOC = ^FOB ( đối đỉnh)

^FCO = ^EBO (^ABF = ^ACE)

OB = OC ( tg OBC cân tại O )

=> tam giác FCO = tam giác EBO(g-c-g)

 

 

 

 

 

20 tháng 4 2017

Xem hình a) ta có:

\(\widehat{A}=\widehat{I}=80^0\) ; \(\widehat{C}=\widehat{N}=30^0\)

\(\widehat{B}=\widehat{M}=180^0-\left(80^0+30^0\right)=70^0\)

Và AB=MI, AC=IN, BC=MN.

nên ∆ABC=∆IMN

Xem hình b) ta có:

\(\widehat{Q}_2=\widehat{R}_2=80^0\)=800 (ở vị trí so le trong)

Nên QH// RP

Nên \(\widehat{R}_1=\widehat{Q}_1\)= 600(so le trong)

\(\widehat{P}=\widehat{H}\)= 400

và QH= RP, HR= PQ, QR chung.

nên ∆HQR=∆PRQ.



15 tháng 8 2017

Xem hình a) ta có:

ˆAA^=ˆII^=800,ˆCC^=ˆNN^=300

ˆBB^=ˆMM^=1800-(800+300)=700

Và AB=MI, AC=IN, BC=MN.

nên ∆ABC=∆IMN

Xem hình b) ta có:

ˆQ2Q2^=ˆR2R2^=800 (ở vị trí so le trong)

Nên QH// RP

Nên ˆR1R1^ = ˆQ1Q1^= 600(so le trong)

ˆPP^=ˆHH^= 400

và QH= RP, HR= PQ, QR chung.

nên ∆HQR=∆PRQ.

23 tháng 5 2017

Hai tam giác bằng nhau vì có các cạnh tương ứng bằng nhau, các góc tương ứng bằng nhau

kí hiệu: ΔABC = ΔMNP