K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2018

(2018a+3b+1)(2018a+2018a+b)=225

=> 2018a+3b+1 và 2018a+2018a+b lẻ

+)Xét \(a\ne0\) 

=> 2018a+2018a chẵn 

Mà 2018a+2018a+b lẻ => b lẻ

Nếu b lẻ => 3b+1 chẵn => 2018a+3b+1 chẵn (loại)

+)Xét a=0

=> (2018.0+3b+1)(20180+2018.0+b)=225

=> (3b+1)(b+1)=225

Vì b thuộc N => 3b+1,b+1 thuộc N => (3b+1)(b+1)=1.225=9.25=3.75=5.45

Vì 3b+1 > b+1 và 3b+1 không chia hết cho 3

=> \(\hept{\begin{cases}3b+1=25\\b+1=9\end{cases}\Rightarrow b=8}\)

Vậy a+b=0+8=8

19 tháng 3 2017

Theo đề bài

\(\Rightarrow\left\{{}\begin{matrix}2008a+3b+1\\2018^a+2018a+b\end{matrix}\right.\) là hai số lẻ

Nếu \(a\ne0\Rightarrow2008^a+2018a\) là số chẵn

Để \(2008^a+2008a+b\) lẻ \(\Rightarrow b\) lẻ

Nếu \(b\) lẻ \(\Rightarrow3b+1\) chẵn

Do đó \(2008a+3b+1\) chẵn (không thỏa mãn)

\(\Rightarrow a=0\)

Với \(a=0\Rightarrow\left(3b+1\right)\left(b+1\right)=225\)

\(b\in N\Rightarrow\left(3b+1\right)\left(b+1\right)=3.75=5.45=9.25\)

Do \(3b+1\) \(⋮̸\) \(3\)\(3b+1>b+1\)

\(\Rightarrow\left\{{}\begin{matrix}3b+1=25\\b+1=9\end{matrix}\right.\)\(\Rightarrow b=8\)

Vậy: \(\left\{{}\begin{matrix}a=0\\b=8\end{matrix}\right.\)

19 tháng 3 2017

1


⇒{2008a+3b+12018a+2018a+b là hai số lẻ

Nếu a≠0⇒2008a+2018a là số chẵn

Để 2008a+2008a+b lẻ ⇒b lẻ

Nếu b lẻ ⇒3b+1 chẵn

Do đó 2008a+3b+1 chẵn (không thỏa mãn)

⇒a=0

Với a=0⇒(3b+1)(b+1)=225

Vì b∈N⇒(3b+1)(b+1)=3.75=5.45=9.25

Do 3b+1 ⋮̸ 3 và 3b+1>b+1

⇒{3b+1=25b+1=9⇒b=8

Vậy: {a=0b=8

     

1.A)

Thay x=1 ta được 
(1-1).f(1)=(1+4).f(1+8) 
<=>5.f(9)=0 
<=>f(9)=0 
suy ra 9 là nghiệm của f(x) 
Thay x=-4 ta được: 
(-4-1).f(-4)=(-4+4).F(-4+8) 
<=>-5.f(-4)=0 
<=>f(-4)=0 
suy ra -4 là nghiệm của f(x) 
Vậy f(x) có ít nhất 2 nghiệm là -4 và 9

21 tháng 1 2019

\(M=\frac{2018a}{ab+2018a+2018}+\frac{b}{bc+b+2018}+\frac{c}{ac+c+1}\)

\(\Rightarrow M=\frac{2018a}{ab+2018a+2018}+\frac{ab}{a\left(bc+b+2018\right)}+\frac{abc}{ab\left(ac+c+1\right)}\)

\(\Rightarrow M=\frac{2018a}{ab+2018a+2018}+\frac{ab}{ab+2018a+2018}+\frac{1}{ab+2018a+2018}\)

\(\Rightarrow M=\frac{2018a+ab+1}{2018a+ab+1}=1\)

21 tháng 1 2019

Do : \(abc=2018\)nên : \(a,b,c\ne0\)

Ta có : \(M=\frac{2018a}{ab+2018a+2018}+\frac{b}{bc+b+2018}+\frac{c}{ac+c+1}\)

\(=\frac{2018a}{ab+2018a+2018}+\frac{ab}{abc+ab+2018a}+\frac{abc}{a^2bc+abc+ab}\)

\(=\frac{2018a}{ab+2018a+2018}+\frac{ab}{2018+ab+2018a}+\frac{2018}{2018+ab+2018a}\)

\(=\frac{2018a+ab+2018}{ab+2018a+2018}=1\)

20 tháng 10 2018

Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

                  \(\Rightarrow\frac{2018a}{2018c}=\frac{2019b}{2019d}\)

Áp dụng t/c DTSBN : \(\frac{2018a}{2018c}=\frac{2019b}{2019d}=\frac{2018a-2019b}{2018c-2019d}=\frac{2018a+2019b}{2018c+2019d}\)

                  Cái này đến đây là đề sai nhé ! Đề phải cho là C/m cái (2018a-2019b).(2018c+2019d) = (2018a-2019b)(2018c+2019d) mới đúng

5 tháng 12 2019

Đặt bằng k nhé

5 tháng 12 2019

Dăm ba mấy bài đặt k:v

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

Ta có:

\(\frac{2018a^2+2019b^2}{2018a^2-2019b^2}=\frac{2018b^2k^2+2019b^2}{2018b^2k^2-2019b^2}=\frac{b^2\left(2018k^2+2019\right)}{b^2\left(2018k^2-2019\right)}=\frac{2018k^2+2019}{2018k^2-2019}\)

\(\frac{2018c^2+2019d^2}{2018c^2-2019d^2}=\frac{2018d^2k^2+2019d^2}{2018d^2k^2-2019d^2}=\frac{d^2\left(2018k^2+2019\right)}{d^2\left(2018k^2-2019\right)}=\frac{2018k^2+2019}{2018k^2-2019}\)

Từ đó \(\frac{2018a^2+2019b^2}{2018a^2-2019b^2}=\frac{2018c^2+2019d^2}{2018c^2-2019d^2}\)