Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
a) \(A=\frac{6x-1}{3x+2}\left(x\ne\frac{-2}{3}\right)\)
Thay x=4 (tm) vào A ta có: \(A=\frac{6\cdot4-1}{3\cdot4+2}=\frac{23}{14}\)
Thay x=-1(tm) vào A ta có: \(A=\frac{-1\cdot6-1}{3\cdot\left(-1\right)+2}=\frac{-6-1}{-3+2}=\frac{-7}{-1}=7\)
Thay x=0 (tm) ta có: \(A=\frac{6\cdot0-1}{3\cdot0+2}=\frac{-1}{2}\)
Vậy A=\(\frac{23}{14}\)khi x=4; \(A=7\)khi x=-1; A=\(\frac{-1}{2}\)khi x=0
b) A=\(\frac{6x-1}{3x+2}\left(x\ne\frac{-2}{3}\right)\)
Để A là số nguyên thì 6x-1 chia hết cho 3x+2
\(\Leftrightarrow A=\frac{2\left(3x+2\right)-5}{3x+2}=2-\frac{5}{3x+2}\)
Để A nguyên thì \(\frac{5}{3x+2}\)nguyên => 5 chia hết cho 3x+2
Vì x thuộc Z => 3x+2 thuộc Z => 3x+2 thuộc Ư (5)={-5;-1;1;5}
Ta có bảng
3x+2 | -5 | -1 | 1 | 5 |
3x | -7 | -3 | -1 | 3 |
x | \(\frac{-7}{3}\) | -1 | \(\frac{-1}{3}\) | 1 |
Vậy x={-1;1} thì A nguyên
a) Ta có \(\left|1-x\right|\ge0\)
Dấu "=" xảy ra khi \(x=1\)và khi đó A đạt gấ trị nhỏ nhất
b) Ta có
\(x+5=x+3+2\)chia hết cho \(x+3\)\(\Rightarrow\)\(2\)chia hết cho \(x+3\)\(\Rightarrow\)\(\left(x+3\right)\inƯ\left(2\right)\)
\(Ư\left(2\right)=\left\{1;-1;2;-2\right\}\)
Do đó :
\(x+3=1\Rightarrow x=1-3=-2\)
\(x+3=-1\Rightarrow x=-1-3=-4\)
\(x+3=2\Rightarrow x=2-3=-1\)
\(x+3=-2\Rightarrow x=-2-3=-5\)
Vậy \(x=\left\{-2;-4;-1;-5\right\}\)
Chúc bạn học tốt
a) Vì (x-1) 2 \(\ge0,\forall x\)
suy ra (x-1) 2 -14 \(\ge-14,\forall x\)
Vây A \(\ge-14,\forall x\)
GTNN của A = -14 khi và chỉ khi x=1
b) 6n2 +3n - 7 chia hết cho 2n+1
suy ra 3n(2n+1) - 7 chia hết cho 2n+1
Vì 3n. (2n+1) chia hết cho 2n +1
suy ra -7 chia hết cho 2n+1
suy ra 2n+1 thuộc {1;-1;7;-7}
2n thuộc {0; -2; 6; -8}
suy ra n thuộc {0; -1; 3; -4}
\(6a+1⋮a+1\)
\(\Leftrightarrow6\left(a+1\right)-6a-1⋮a+1\Leftrightarrow5⋮a+1\)
\(\Leftrightarrow a+1\in\left\{-1;1;-5;5\right\}\Leftrightarrow a\in\left\{-2;0;-6;4\right\}\)
6a+1=6a+6-5=6(a+1)-5
6(a+1) chia hết cho a+1 => 5 chia hết cho a+1
a+1\(\in\)Ư(5)
a +1\(\in\){-5;-1;1;5}
a\(\in\){-5;-2;0;4}
B2 :
Theo bài ra,ta có : \(x-1⋮x+6\)
\(\Rightarrow x+6-7⋮x+6\)
Mà \(x+6⋮x+6\)
\(\Rightarrow7⋮x+6\)
\(\Rightarrow x+6\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x\in\left\{-5;-7;1;-13\right\}\)để \(x-1⋮x+6\)
b) Theo bài ra, ta có : A nhỏ nhất
\(\Rightarrow\left|3a-1\right|\)nhỏ nhất
Mà \(\left|3a-1\right|\ge0\)
\(\Rightarrow\left|3a-1\right|=0\)
\(\Rightarrow A=0-5\)
\(\Rightarrow A=-5\)
Vậy A có GTNN là -5
Theo bài ra, ta có A nhỏ nhất :
=> | 3a - 1 | nhỏ nhất
Mà 3a - 1 > 0
=> | 3a - 1 | = 0
=> 3a - 1 = 0
=> 3a = 0 + 1
=> 3a = 1
=> a = 1 : 3
Mà 1 lại không chia hết cho 3
=> \(a\in\varnothing\)
Vậy ko tìm đc GTNN của A