K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2019

\(6a+1⋮a+1\)

\(\Leftrightarrow6\left(a+1\right)-6a-1⋮a+1\Leftrightarrow5⋮a+1\)

\(\Leftrightarrow a+1\in\left\{-1;1;-5;5\right\}\Leftrightarrow a\in\left\{-2;0;-6;4\right\}\)

28 tháng 1 2019

6a+1=6a+6-5=6(a+1)-5

6(a+1) chia hết cho a+1 => 5 chia hết cho a+1

a+1\(\in\)Ư(5)

a +1\(\in\){-5;-1;1;5}

a\(\in\){-5;-2;0;4}

8 tháng 4 2023

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

18 tháng 3 2020

B2 :

Theo bài ra,ta có : \(x-1⋮x+6\)

\(\Rightarrow x+6-7⋮x+6\)

Mà \(x+6⋮x+6\)

\(\Rightarrow7⋮x+6\)

\(\Rightarrow x+6\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Rightarrow x\in\left\{-5;-7;1;-13\right\}\)để  \(x-1⋮x+6\)

b) Theo bài ra, ta có : A nhỏ nhất

\(\Rightarrow\left|3a-1\right|\)nhỏ nhất

Mà \(\left|3a-1\right|\ge0\)

\(\Rightarrow\left|3a-1\right|=0\)

\(\Rightarrow A=0-5\)

\(\Rightarrow A=-5\)

Vậy A có GTNN là -5

Theo bài ra, ta có A nhỏ nhất :

=> | 3a - 1 | nhỏ nhất

Mà 3a - 1  > 0

=> | 3a - 1 | = 0

=> 3a - 1 = 0

=> 3a = 0 + 1

=> 3a = 1

=> a = 1 : 3

Mà 1 lại không chia hết cho 3 

=> \(a\in\varnothing\)

Vậy ko tìm đc GTNN của A

28 tháng 3 2016

tach 14-x = 10-4-x roi sau do chac ban cung phai tu biet lam

5 tháng 2 2020

Bài 1 : 

Đề câu a) có thêm \(n\inℤ\)

a) \(A=n^2+n+3=n\left(n+1\right)+2+1\)

Ta thấy : \(n\left(n+1\right)⋮2,2⋮2\)

\(\Rightarrow n\left(n+1\right)+2⋮2\)

\(\Rightarrow n\left(n+1\right)+2+1⋮̸2\)

hay \(A⋮̸2\) ( đpcm )

b) Ta có : \(\left|2x-4\right|\ge0\forall x\)

\(\Rightarrow-\left|2x-4\right|\le0\forall x\)

\(\Rightarrow18-\left|2x-4\right|\le18\forall x\)

hay \(A\le18\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left|2x-4\right|=0\Leftrightarrow x=2\)

Vậy max \(A=18\) khi \(x=2\)

5 tháng 2 2020

b1 : 

a,n^2 + n + 3

= n(n + 1) + 3

n(n+1) là tích của 2 stn liên tiếp => n(n+1) chia hết cho 2

=> n(n+1) + 3 không chia hết cho 2

b, A = 18 - |2x - 4| 

|2x - 4| > 0 => - |2x - 4| < 0

=> 18 - |2x - 4| < 18 

=> A < 18

xét A = 18 khi |2x - 4| = 0

=> 2x - 4 = 0

=> x = 2

c, A = |5 - x| + 2015

|5 - x| > 0

=> |5 - x| + 2015 > 2015

=> A  > 2015

xét A = 2015 khi |5 - x| = 0

=> 5 - x = 0 => x = 5

30 tháng 1 2020

b)Ta có \(17⋮\left(2a+3\right)\)

\(\Rightarrow\left(2a+3\right)\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)

Ta có bảng

2a+3-17-1117
2a-20-4-214
a-10-2-17

Vậy...

Chúc bn học tốt!

#TM

30 tháng 1 2020

\(A = | x -5 | +11\)

\(A =|x-5|+11\)\(\ge\)\(11\)

Dấu " = " xảy ra \(\Leftrightarrow\)\(x -5=0\)

                           \(\Leftrightarrow\)\(x =5\)

\(Vậy : Min A = 11 <=> x = 5\)