K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 11 2017

Lời giải:

Ta có: \(\left\{\begin{matrix} x^2=y-1\\ y^2=z-1\\ z^2=x-1\end{matrix}\right.\)\(\Rightarrow \left\{\begin{matrix} x^2-y^2=y-z\\ y^2-z^2=z-x\\ z^2-x^2=x-y\end{matrix}\right.\)

\(\Rightarrow (x^2-y^2)(y^2-z^2)(z^2-x^2)=(x-y)(y-z)(z-x)\)

\(\Leftrightarrow (x-y)(y-z)(z-x)[(x+y)(y+z)(z+x)-1]=0\)

Giả sử 2 trong 3 số \(x,y,z\) bằng nhau \((x=y)\)

Thay vào PT 1: \(x^2=y-1=x-1\Leftrightarrow x^2-x+1=0\)

\(\Leftrightarrow (x-\frac{1}{2})^2+\frac{3}{4}=0\) (vô lý)

Do đó \(x\neq y\neq z\)

\(\Leftrightarrow (x-y)(y-z)(z-x)\neq 0\)

Suy ra \((x+y)(y+z)(z+x)=1\) (1)

Vì \(x,y,z\in\mathbb{Z}\Rightarrow x+y,y+z,z+x\in\mathbb{Z}\) (2)

Từ (1),(2) suy ra \(x+y,y+z,z+x\in \left\{-1;1\right\}\)

Vì chỉ có 2 giá trị mà có 3 số nên tồn tại 2 số có cùng giá trị 1 hoặc -1

Giả sử \(x+y=y+z\Rightarrow x=z\) (vô lý vì \(x\neq y\neq z\) )

Vậy không tồn tại bộ 3 số nguyên x,y,z thỏa mãn.

23 tháng 1 2017

-Có |x| lớn hơn hoặc bằng 0 với mọi y => y-2017 lớn hơn hoặc bằng 0 với mọi y => y lớn hơn hoặc bằng 2017

-Có |y| lớn hơn hoặc bằng 0 với mọi z => z-2017 lớn hơn hoặc bằng 0 với mọi z => z lớn hơn hoặc bằng 2017

-Có |z lớn hơn hoặc bằng 0 với mọi x => x-2017 lớn hơn hoặc bằng 0 với mọi x => x lớn hơn hoặc bằng 2017

=> |x| = y-2017=x => y-x=2017

=> |y| = z-2017=y => z-y=2017

=> |z| = x-2017=z => x-z=2017

=> y-x+z-y+x-z=2017

=> 0=2017 (vô lý)

=> Không có x;y;z thoả mãn

k nha

10 tháng 7 2017

==" tớ cx làm thế đấy trang ơi, như bạn Sherry kìa, nhưng tiếc là T^T thiếu dấu bằng x lớn hơn hoặc bằng (= =+) thế là khỏi có điểm

18 tháng 1 2018

Ta có:

( x + 1 ) . yz - xyz = 2

\(\Rightarrow\)xyz + yz - xyz = 2

\(\Rightarrow\) yz = 2

\(\Rightarrow\orbr{\begin{cases}y=1;z=2\\y=2;z=1\end{cases}}\)

Vậy y ; z bằng 2 hoặc 1 và x là số nguyên

18 tháng 1 2018

Theo đề ra ta có :

(x+1)yz - xyz = 2

\(\Rightarrow\) xyz + yz - xyz = 2

\(\Rightarrow\) yz = 2

Mà x , y , z là số nguyên

\(\Rightarrow\)\(\orbr{\begin{cases}y=1,z=2\\y=2,z=1\end{cases}}\)

Nhận xét mọi x nguyên thỏa mãn 

Vậy x là số nguyên ; y=1 ; z = 2 và x là số nguyên ; y = 2 ; z = 1