Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=4x^3+4\left(m-2\right)x=0\Rightarrow\left[{}\begin{matrix}x=0\\x^2=2-m\end{matrix}\right.\)
Hàm có 3 cực trị khi và chỉ khi \(2-m>0\Leftrightarrow m< 2\)
Khi đó gọi 3 cực trị là A, B, C ta có: \(\left\{{}\begin{matrix}A\left(0;m^2-5m+5\right)\\B\left(\sqrt{2-m};1-m\right)\\C\left(-\sqrt{2-m};1-m\right)\end{matrix}\right.\)
Tam giác ABC luôn cân tại A
Gọi H là trung điểm BC \(\Rightarrow H\left(0;1-m\right)\)
\(AH=\left|y_A-y_H\right|=\left|m^2-4m+4\right|=\left(m-2\right)^2\)
\(BC=2\sqrt{2-m}\)
Do ABC đều \(\Rightarrow AH=\dfrac{\sqrt{3}}{2}BC\Leftrightarrow\left(m-2\right)^2=\dfrac{\sqrt{3}}{2}\sqrt{2-m}\)
\(\Leftrightarrow\left(2-m\right)^3=\dfrac{3}{4}\Rightarrow m=2-\sqrt[3]{\dfrac{3}{4}}\)
Chọn C
Ta có
nên hàm số có 3 điểm cực trị khi m > 1.
Với đk m > 1 đồ thị hàm số có 3 điểm cực trị là:
Ta có:
Để 3 điểm cực trị của đồ thị hàm số tạo thành tam giác đều thì:
So sánh với điều kiện ta có: m = 1 + 3 3 2 thỏa mãn.
[Phương pháp trắc nghiệm]
Yêu cầu bài toán
Chọn B
Ta có :
Hàm số đã cho có ba điểm cực trị khi m > 0(*)
Khi đó ba điểm cực trị của đồ thị hàm số là
A ( 0 ; m - 1 ) , B ( - m ; - m 2 + m - 1 )
S ∆ A B C = 1 2 y B - y A x c - x B
Kết hợp điều kiện (*) ta có
[Phương pháp trắc nghiệm]
Áp dụng công thức
Kết hợp điều kiện (*) ta có
Chọn B
Ta có :
Hàm số đã cho có ba điểm cực trị khi m > 0(*)
Khi đó ba điểm cực trị của đồ thị hàm số là
A ( 0 ; m - 1 ) , B ( - m ; - m 2 + m - 1 )
S ∆ A B C = 1 2 y B - y A x c - x B
Kết hợp điều kiện (*) ta có
[Phương pháp trắc nghiệm]
Áp dụng công thức
Kết hợp điều kiện (*) ta có
Chọn B
[Phương pháp tự luận]
Hàm số có 3 điểm cực trị khi m > 0
Ba điểm cực trị là
Gọi I là trung điểm của B C ⇒ I ( 0 ; m - m 2 )
S ∆ A B C = 1 2 A I . B C = m m 2
Chu vi của ∆ A B C là:
Bán kính đường tròn nội tiếp ∆ A B C là:
r = S ∆ A B C p = m m 2 m + m 4 + m
Theo bài ra: r > 1 ⇔ m m 2 m + m 4 + m > 1
⇔ m m 2 ( m + m 4 - m ) m 4 > 1 (vì m > 0 )
So sánh điều kiện suy ra m > 2 thỏa mãn.
[Phương pháp trắc nghiệm]
Sử dụng công thức
Theo bài ra:
So sánh điều kiện suy ra m > 2 thỏa mãn.
Chọn D
Hàm số có 3 điểm cực trị ⇔ m ≠ 0
Khi đó 3 điểm cực trị của đồ thị hàm số là
Do tính chất đối xứng, ta có ∆ A B C cân tại đỉnh A
Vậy ∆ A B C chỉ có thể vuông cân tại đỉnh A
Kết hợp điều kiện ta có: m = ± 1 ( thỏa mãn).
Lưu ý: có thể sử dụng công thức b 3 8 a + 1 = 0 .
Chọn A
Ta có:
Hàm số (C) có ba điểm cực trị ⇔ m ≠ 0 (*) .
Với điều kiện (*) gọi ba điểm cực trị là:
.
Do đó nếu ba điểm cực trị tạo thành một tam giác vuông cân, thì sẽ vuông cân tại đỉnh A.
Do tính chất của hàm số trùng phương, tam giác ABC đã là tam giác cân rồi, cho nên để thỏa mãn điều kiện tam giác là vuông, thì AB vuông góc với AC
Tam giác ABC vuông khi:
Vậy với m = ± 1 thì thỏa mãn yêu cầu bài toán.
[Phương pháp trắc nghiệm]
Yêu cầu bài toán
⇔ b 3 8 a + 1 = 0 ⇔ - m 6 + 1 = 0
⇔ m = ± 1
Chọn C
Hàm số có 3 cực trị ⇔ m > 0
Khi đó 3 điểm cực trị của đồ thị hàm số là
Do tính chất đối xứng, ta có ∆ A B C cân tại đỉnh A
Vậy ∆ A B C đều chỉ cần AB = BC
Kết hợp điều kiện ta có m = 3 3 (thỏa mãn)
Lưu ý: có thể sử dụng công thức b 3 8 a + 3 = 0
( - 2 m ) 3 8 + 3 = 0 ⇔ m 3 = 3 m ⇔ m = 3 3