Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
abc + bca + acb = 777
111 . ( a + b + c ) = 7 . 111
a + b + c = 7
vì \(0< a+b+c\le27\) và a,b,c khác nhau
Từ đó ta tìm được các chữ số a,b,c khác nhau và a + b + c = 7
= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b=777
=111a + 111b + 111c = 777
=> 111(a+b+c) = 777
=> a+ b + c = 777 : 111
=> a+ b + c = 7
tiếp theo bn tự lm nha!
Theo đề ra, ta có:
\(\frac{a}{b}=\frac{9}{7}\Rightarrow\frac{a}{9}=\frac{b}{7}\)
\(\frac{b}{c}=\frac{7}{3}\Rightarrow\frac{b}{7}=\frac{c}{3}\)
\(\Rightarrow\frac{a}{9}=\frac{b}{7}=\frac{c}{3}\)
Áp dụng tính chất của dãy tỷ số bằng nhau
\(\frac{a}{9}=\frac{b}{7}=\frac{c}{3}=\frac{a-b+c}{9-7+3}=\frac{-15}{5}=-3\)
\(\Rightarrow a=\left(-3\right).9=-27\)
\(\Rightarrow b=\left(-3\right).7=-21\)
\(\Rightarrow c=\left(-3\right).3=-9\)
Ai biết cách làm, làm ơn ghi rõ ra dùm mik nhe. Cảm ơn nhiều trước.
Đặt \(S=a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\)
Từ giả thiết: \(a+b+c=0\Rightarrow b+c=-a;c+a=-b;a+b=-c.\)
Thay vào biểu thức S, ta có:
\(S=a^2.\left(-a\right)+b^2.\left(-b\right)+c^2.\left(-c\right)=-a^3-b^3-c^3\)
\(S=-\left(a^3+b^3+c^3\right)=-\left[\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]\)
\(S=-\left[0-3\left(-c\right).\left(-a\right).\left(-b\right)\right]\)(Do a+b+c=0 và a+b=-c; b+c=-a; a+b=-c)
\(S=-\left[-3.\left(-abc\right)\right]=-\left(3abc\right)\)
Thay \(abc=-15\)vào biểu thức S: \(S=-\left[3.\left(-15\right)\right]=-\left(-45\right)=45.\)
ĐS: \(S=45.\)
Câu 1:
a: Xét ΔAMB vuông tại Mvà ΔAMC vuông tại M có
AB=AC
AM chung
Do đó: ΔAMB=ΔAMC
b: XétΔAHM vuông tại H và ΔAKM vuông tại K có
AMchung
góc HAM=góc KAM
Do đó: ΔAHM=ΔAKM
Suy ra: AH=AK
c: Xét ΔABC có AH/AB=AK/AC
nên HK//BC