Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
day mik cach lam dang nay voi cac ban
tim a va b sao cho
(x3 +ax2-3x+b) :(x-2) du 5 va : (x-1) du -4
pt <=> ( 2x + 3 )( x - 5 ) - 2x( 2x + 3 ) = 0
<=> ( 2x + 3 )( -x - 5 ) = 0
<=> x = -3/2 hoặc x = -5
Vậy ...
\(\left(2x+3\right)\left(x-5\right)=4x^2+6x\Leftrightarrow\left(2x+3\right)\left(x-5\right)=2x\left(2x+3\right)\)
\(\Leftrightarrow\left(2x+3\right)\left(-x-5\right)=0\Leftrightarrow x=-\frac{3}{2};x=-5\)
Vậy tập nghiệm của pt là S = { -5 ; -3/2 }
1: \(\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)
\(=a^3+b^3\)
2: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(x^2+3x+2\) =\(x^2+2.\frac{3}{2}x+\left(\frac{3}{2}\right)^2-\frac{5}{4}\)=\(\left(x+\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
Dấu "=" xảy ra <=>\(x+\frac{3}{2}=0\)<=>\(x=-\frac{3}{2}\)
Bài 2:
a) \(x^2-4x+y^2+2y+5=0\)
=> \(\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)
=>\(\left(x-2\right)^2+\left(y+1\right)^2=0\)
Vì \(\left(x-2\right)^2+\left(y+1\right)^2\ge0\)nên:
=>\(\hept{\begin{cases}x-2=0\\y+1=0\end{cases}}\)<=>\(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)
b)\(2x^2+y^2-2xy+10x+25=0\)
=>\(\left(x^2-2xy+y^2\right)+\left(x^2+10x+25\right)=0\)
=>\(\left(x-y\right)^2+\left(x+5\right)^2=0\)
Tới đây thì dễ nhá !
=> 10a+b-10b-a=-9
=> -9b+9a=-9
=> a-b= -1 => a=b-1
Xét trường hợp b=3 và 8 sẽ có kết quả là 78 và 23