K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2021

b. Tự đặt đk

\(x^{^2}+5\sqrt{x-3}=21\\\Leftrightarrow x^{^2}-9+5\sqrt{x-3}=12 \)

Đặt \(a=\sqrt{x-3}\) \(\left(a\ge0\right)\) Phương trình trở thành:

\(a^{^2}\left(a^{^2}+6\right)+5a=12\\ \Leftrightarrow a^{^4}+6a^{^2}+5a-12=0\\ \Leftrightarrow a^{^4}-a^{^3}+a^{^3}-a^{^2}+7a^{^2}-7a+12a-12=0\\ \Leftrightarrow\left(a-1\right)\left(a^{^3}+a^{^2}+7a+12\right)=0\\ \Leftrightarrow a=1\left(tmdk\right)\)

Ta có: vì \(a\ge0\) nên \(a^{^3}+a^{^2}+7a+12\ne0\)

Với a = 1 ta có x=4 (tmdk)

19 tháng 6 2021

cảm ơn bạn

a: =>(x-7)(x+3)=0

hay \(x\in\left\{7;-3\right\}\)

b: =>2x+7=0

hay x=-7/2

c: \(\Delta=50-4\cdot6\cdot2=50-48=2\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{5\sqrt{2}-\sqrt{2}}{12}=\dfrac{\sqrt{2}}{3}\\x_2=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)

4 tháng 4 2017

a) (3x2 - 7x – 10)[2x2 + (1 - √5)x + √5 – 3] = 0

=> hoặc (3x2 - 7x – 10) = 0 (1)

hoặc 2x2 + (1 - √5)x + √5 – 3 = 0 (2)

Giải (1): phương trình a - b + c = 3 + 7 - 10 = 0

nên

x1 = - 1, x2 = =

Giải (2): phương trình có a + b + c = 2 + (1 - √5) + √5 - 3 = 0

nên

x3 = 1, x4 =

b) x3 + 3x2– 2x – 6 = 0 ⇔ x2(x + 3) – 2(x + 3) = 0 ⇔ (x + 3)(x2 - 2) = 0

=> hoặc x + 3 = 0

hoặc x2 - 2 = 0

Giải ra x1 = -3, x2 = -√2, x3 = √2

c) (x2 - 1)(0,6x + 1) = 0,6x2 + x ⇔ (0,6x + 1)(x2 – x – 1) = 0

=> hoặc 0,6x + 1 = 0 (1)

hoặc x2 – x – 1 = 0 (2)

(1) ⇔ 0,6x + 1 = 0

⇔ x2 = =

(2): ∆ = (-1)2 – 4 . 1 . (-1) = 1 + 4 = 5, √∆ = √5

x3 = , x4 =

Vậy phương trình có ba nghiệm:

x1 = , x2 = , x3 = ,

d) (x2 + 2x – 5)2 = ( x2 – x + 5)2 ⇔ (x2 + 2x – 5)2 - ( x2 – x + 5)2 = 0

⇔ (x2 + 2x – 5 + x2 – x + 5)( x2 + 2x – 5 - x2 + x - 5) = 0

⇔ (2x2 + x)(3x – 10) = 0

⇔ x(2x + 1)(3x – 10) = 0

Hoặc x = 0, x = , x =

Vậy phương trình có 3 nghiệm:

x1 = 0, x2 = , x3 =



28 tháng 2 2019

1, 

a) \(x^2-4x+m=0\)

\(\Delta=b^2-4ac=\left(-4\right)^2-4.1.m=16-4m\)

Để pt có nghiệm : \(\Delta\ge0\)

<=>\(16-4m\ge0\)

\(\Leftrightarrow16\ge4m\)

\(\Leftrightarrow m\le4\)

28 tháng 4 2021

(x2−2x+1+2)(2x−x2−1+7)=18(x2-2x+1+2)(2x-x2-1+7)=18

⇒[(x−1)2+2][7−(x−1)2]=18(1)⇒[(x-1)2+2][7-(x-1)2]=18(1)

Đặt (x−1)2=a(x-1)2=a

(1)⇔(a+2)(7−a)=18(1)⇔(a+2)(7-a)=18

⇒−a2+5a+14=18⇒-a2+5a+14=18

⇒a2−5a+4=0⇒a2-5a+4=0

Ta có a+b+c=1−5+4=0a+b+c=1-5+4=0

⇒a1=1⇒a1=1

a2=41=4a2=41=4

Thay (x−1)2=a(x-1)2=a vào ta được

[(x−1)2=1(x−1)2=4[(x−1)2=1(x−1)2=4

⇒⎡⎢ ⎢ ⎢⎣x−1=1x−1=−1x−1=2x−1=−2⇒[x−1=1x−1=−1x−1=2x−1=−2

⇒⎡⎢ ⎢ ⎢⎣x=2x=0x=3x=−1⇒[x=2x=0x=3x=−1

Vậy nghiệm của phương trình là x={−1;0;2;3}

NV
22 tháng 12 2022

Thay \(x=-1\) vào ta được:

\(\left(-1\right)^2-\left(3m+1\right)\left(-1\right)+m-5=0\)

\(\Leftrightarrow4m-3=0\Rightarrow m=\dfrac{3}{4}\)

25 tháng 10 2015

a) => 5x^2 - 3 = 2 hoặc 5x^2 - 3 = -2 

=> 5x^2 = 5 hoặc 5x^2 = 1 

b) pt <=> l(x-1)^2l = x + 2 

VÌ ( x - 1 )^2 >=  0  => l( x - 1 )^2 l = ( x- 1 )^2 

pt <=> x^2 - 2x + 1 = x + 2 <=>

 x^2 - 3x - 1 = 0 

c) l2x-5l - l2x^2 - 7x + 5 l =  0 

<=> l2x-5l - l ( 2x-5)(x-1) l = 0 

<=> l2x-5l ( 1 - l x - 1 l = 0 

<=> l 2x - 5 l = 0 hoặc 1 - l x - 1 l = 0 

d); e lập bảng xét dấu sau đó xét ba trường hợ p ra 

21 tháng 1 2023

Đáp án A.