Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\Delta'=\left(-2\right)^2-m=4-m\)
Phương trình có nghiệm
\(\Leftrightarrow\Delta'\ge0\Rightarrow m\le4\)
Theo Vi-ét
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=4\\x_1x_2=m\end{matrix}\right.\)
b)
\(\Delta'=\left(-1\right)^2-m^2-3=-4-m^2\)
\(\Delta'\ge0\Rightarrow-4-m^2\ge0\Rightarrow m^2+4\le0\) ( vô lí )
=> PTVN
a: TH1: m=3
=>2x-5=0
=>x=5/2(nhận)
TH2: m<>3
Δ=2^2-4*(m-3)*(-5)
=4+20(m-3)
=4+20m-60=20m-56
Để phương trình có nghiệm kép thì 20m-56=0
=>m=2,8
=>-0,2x^2+2x-5=0
=>x^2-10x+25=0
=>x=5
b: Để phươg trình có hai nghiệm pb thì 20m-56>0
=>m>2,8
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
\(a.\Leftrightarrow mx^2+2mx-x+m+2=0\)
\(\Leftrightarrow mx\left(x+2\right)+\left(m+2\right)-x=0\)
\(\Leftrightarrow\left(m+2\right)\left(mx+1\right)-x=0\)
\(\Rightarrow\left\{{}\begin{matrix}m=\left(0+x\right):\left(mx+1\right)-2\\m=[\left(0+x\right):\left(m+2\right)-1]:x\end{matrix}\right.\)
m x 2 + (2m – 1)x + m + 2 = 0 (1)
*Nếu m = 0, ta có (1) ⇔ -x + 2 = 0 ⇔ x = 2
*Nếu m ≠ 0 thì (1) có nghiệm khi và chỉ khi ∆ ≥ 0
Ta có : ∆ = 2 m - 1 2 – 4m(m + 2) = 4 m 2 – 4m + 1 – 4 m 2 – 8m
= -12m + 1
∆ ≥ 0 ⇔ -12m + 1 ≥ 0 ⇔ m ≤ 1/12
Vậy khi m ≤ 1/12 thì phương trình đã cho có nghiệm.
Giải phương trình (1) theo m :
1) điều kiện của m: m khác 5/2
thế x=2 vào pt1 ta đc:
(2m-5)*4 - 4(m-1)+3=0 <=> 8m-20-4m+4+3=0<=> 4m = 13 <=> m=13/4 (nhận)
lập △'=[-(m-1)]2-*(2m-5)*3 = (m-4)2
vì (m-4)2 ≥ 0 nên phương trình có nghiệm kép => x1= x2 =2
3) vì △'≥0 với mọi m nên phương trình đã cho có nghiệm với mọi m
1,
a) \(x^2-4x+m=0\)
\(\Delta=b^2-4ac=\left(-4\right)^2-4.1.m=16-4m\)
Để pt có nghiệm : \(\Delta\ge0\)
<=>\(16-4m\ge0\)
\(\Leftrightarrow16\ge4m\)
\(\Leftrightarrow m\le4\)