K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2017

- Xét: a : b = 9 : 4 \(\Rightarrow\frac{a}{9}=\frac{b}{4}\)\(\Rightarrow\frac{a}{45}=\frac{b}{20}\)

       b : c = 5 : 3 \(\Rightarrow\frac{b}{5}=\frac{c}{3}\)\(\Rightarrow\frac{b}{20}=\frac{c}{12}\)    

=> \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}\)

- Đặt: \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}=k\Rightarrow\hept{\begin{cases}a=45.k\\b=20.k\\c=12.k\end{cases}}\)

-Thay a = 45.k, b = 20.k , c = 12.k vào \(\frac{a-b}{b-c}\) ;ta có: 

\(\frac{a-b}{b-c}=\frac{45.k-20.k}{20.k-12.k}=\frac{25.k}{8.k}=\frac{25}{8}\)

Vậy \(\frac{a-b}{b-c}=\frac{25}{8}\)

23 tháng 12 2016

bn nhận xét thấy mẫu và tử đều có b nên:

a/b = 9/4 => a = 9b/4 (1)

b/c = 5/3 => c= 3b/5 (2)

thay (1) va(2) vào có (a-b)/(b-c) = (9b/4 - b)/(b- 3b/5) = 25/8

23 tháng 12 2016

thanks for youvui

6 tháng 7 2020

để chứng minh 1 trong 3 số a,b,c là lập phương của 1 số hữu tỉ ta sẽ chứng minh \(\sqrt[3]{a};\sqrt[3]{b};\sqrt[3]{c}\) có ít nhất 1 số hữu tỉ

đặt \(\hept{\begin{cases}x=\frac{a}{b^3}\\y=\frac{b}{c^3}\\z=\frac{c}{a^3}\end{cases}\Rightarrow\hept{\begin{cases}\frac{1}{x}=\frac{b^3}{a}\\\frac{1}{y}=\frac{c^3}{b}\\\frac{1}{z}=\frac{a^3}{b}\end{cases}}}\)

do abc=1 => xyz=1 (1)

từ đề bài => \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Rightarrow x+y+z=xy+yz+xz\left(xyz\ge1\right)\left(2\right)\)

Từ (1)(2) => \(xyz+\left(x+y+z\right)-\left(xy+yz+zx\right)-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)=0\)

vậy \( {\displaystyle \displaystyle \sum }x=1 \) chẳng hạn, => \(a=b^3\)

\(\Rightarrow\sqrt[3]{a}=b\)mà b là số hữu tỉ

Vậy trong 3 số \(\sqrt[3]{a};\sqrt[3]{b};\sqrt[3]{c}\)có ít nhất 1 số hữu tỉ (đpcm)

1 tháng 12 2018

Đáp án cần chọn là: A

Vì số đo của các góc  A ^ ;   B ^ ;   C ^ ;   D ^ tỉ lệ thuận với 4; 3; 5; 6 nên ta có:

A 4 = B 3 = C 5 = D 6 = A + B + C + D 4 + 3 + 5 + 6 = A + B + C + D 18

( tính chất dãy tỉ số bằng nhau )

Mà  A ^ + B ^ + C ^ + D ^ = 360 ° nên ta có

A 4 = B 3 = C 5 = D 6 = A + B + C + D 18 = 360 0 18 = 20 0

⇒ A ^ = 4 × 20 ° = 80 °   ;   B ^ = 3 × 20 ° = 60 ° C ^ = 5 × 20 ° = 100 °   ;   D ^ = 6 × 20 ° = 120 °

Nên số đo các góc  A ^ ;   B ^ ;   C ^ ;   D ^ lần lượt là  80 ° ;   60 ° ;   100 ° ;   120 °

(a-b-c)-(c+b-a)= -1

<=>a-b-c-c-b-a= -1

<=> -2b-2c= -1

=> 2010a+2009=0+2009=2009

b) Số nguyên thỏa mãn là 0

DD
29 tháng 3 2022

Đặt \(\frac{a}{b^2}=x,\frac{b}{c^2}=y,\frac{c}{a^2}=z\).

\(\Rightarrow xyz=\frac{abc}{a^2b^2c^2}=\frac{1}{abc}=1\)

Theo bài ra ta có : \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)

\(\Leftrightarrow x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Leftrightarrow x+y+z=xy+yz+xz\)

\(\Leftrightarrow\left(xy-x-y+1\right)-1+z\left(x+y-1\right)=0\)

\(\Leftrightarrow\left(xy-x-y+1\right)+z\left(x+y-1-xy\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)-z\left(x-1\right)\left(y-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(1-z\right)=0\)

\(\Leftrightarrow\frac{a-b^2}{b^2}.\frac{b-c^2}{c^2}.\frac{a^2-c}{a^2}=0\)

\(\Leftrightarrow\left(a-b^2\right)\left(b-c^2\right)\left(c-a^2\right)=0\)

Ta có đpcm

11 tháng 4 2021

Câu 1 :

B sai vì a/b=2/3; d/m=6/8=3/4

Câu 2

Chọn A