Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2.\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2.\dfrac{a+b+c}{abc}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2.\dfrac{0}{abc}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)
1/ Đặt
\(\frac{a}{b^2}=x,\frac{b}{c^2}=y,\frac{c}{a^2}=z,xyz=1\)thì ta có
\(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow xy+yz+zx=x+y+z\)
\(\Leftrightarrow xyz-xy-yz-zx+x+y+z-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)=0\)
\(\Leftrightarrow x=1;y=1;z=1\)
\(\Rightarrow\frac{a}{b^2}=1;\frac{b}{c^2}=1;\frac{c}{a^2}=1\)
\(\Leftrightarrow a=b^2;b=c^2;c=a^2\)
2/ Đặt
\(ab=x,bc=y,ca=z\) cần tính
\(P=\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\left(1+\frac{y}{x}\right)\)
\(\Rightarrow x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\x^2+y^2+z^2-xy-yz-zx=0\end{cases}}\)
Xét \(x+y+z=0\)
\(\Rightarrow P=\frac{x+y}{x}.\frac{y+z}{y}.\frac{z+x}{z}=\frac{\left(-x\right)\left(-y\right)\left(-z\right)}{xyz}=-1\)
Xét \(x^2+y^2+z^2-xy-yz-zx=0\)
\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow x=y=z\)
\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
Thay ab+bc+ac = 1 và Q ta được :
\(Q=\left(a^2+ab+ac+bc\right)\left(b^2+ab+ac+bc\right)\left(c^2+ab+ac+bc\right)\)
\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
\(=\left[\left(a+b\right)\left(a+c\right)\left(b+c\right)\right]^2\) là bình phương của một số hữu tỉ (đpcm)
\(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=\dfrac{a}{abc}+\dfrac{b}{abc}+\dfrac{c}{abc}=\dfrac{a+b+c}{abc}=0\left(a+b+c=0\right)\\ \Rightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)
\(\)1 a b + 1 b c + 1 c a = a a b c + b a b c + c a b c = a + b + c a b c = 0 ( a + b + c = 0 ) ⇒ 1 a 2 + 1 b 2 + 1 c 2 = 1 a 2 + 1 b 2 + 1 c 2 + 2 ( 1 a b + 1 b c + 1 c a ) = ( 1 a + 1 b + 1 c ) 2
Từ \(a+b+c=0\Rightarrow a+b=-c\)
\(\Rightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}=\dfrac{b^2\left(a+b\right)^2+a^2\left(a+b\right)^2+\left(ab\right)^2}{a^2b^2\left(a+b\right)^2}\)
\(=\dfrac{a^2b^2+2ab^3+b^4+a^4+2a^3b+a^2b^2+a^2b^2}{a^2b^2\left(a+b\right)^2}\)
\(=\dfrac{a^4+2ab^3+2a^3b+3a^2b^2+b^4}{a^2b^2\left(a+b\right)^2}\)
\(=\dfrac{\left(a^2+ab+b^2\right)^2}{a^2b^2\left(a+b\right)^2}=\left[\dfrac{a^2+ab+b^2}{ab\left(a+b\right)}\right]^2\) là bình phương của 1 số hữu tỉ (đpcm)
Đặt \(\frac{a}{b^2}=x,\frac{b}{c^2}=y,\frac{c}{a^2}=z\).
\(\Rightarrow xyz=\frac{abc}{a^2b^2c^2}=\frac{1}{abc}=1\)
Theo bài ra ta có : \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)
\(\Leftrightarrow x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow x+y+z=xy+yz+xz\)
\(\Leftrightarrow\left(xy-x-y+1\right)-1+z\left(x+y-1\right)=0\)
\(\Leftrightarrow\left(xy-x-y+1\right)+z\left(x+y-1-xy\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)-z\left(x-1\right)\left(y-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(1-z\right)=0\)
\(\Leftrightarrow\frac{a-b^2}{b^2}.\frac{b-c^2}{c^2}.\frac{a^2-c}{a^2}=0\)
\(\Leftrightarrow\left(a-b^2\right)\left(b-c^2\right)\left(c-a^2\right)=0\)
Ta có đpcm