Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có A=\(\frac{20132013}{20142014}\)=\(\frac{2013.10001}{2014.10001}\)=\(\frac{2013}{2014}\)
B=\(\frac{131313}{141414}\)=\(\frac{13.10101}{14.10101}\)=\(\frac{13}{14}\)
xét 1-\(\frac{2013}{2014}\)=\(\frac{1}{2014}\);1-\(\frac{13}{14}\)=\(\frac{1}{14}\)
vì \(\frac{1}{2014}\)<\(\frac{1}{14}\) suy ra \(\frac{2013}{2014}\)>\(\frac{13}{14}\)suy ra A>B
Vậy ..................................
Ta có:
\(A=\frac{20132013}{20142014}\)
\(A=\frac{20132013\div10001}{20142014\div10001}\)
\(A=\frac{2013}{2014}\)
và \(B=\frac{131313}{141414}\)
\(B=\frac{131313\div10101}{141414\div10101}\)
\(B=\frac{13}{14}\)
ta có: \(A=\frac{2013}{2014}=1-\frac{1}{2014}\)
và \(B=\frac{13}{14}=1-\frac{1}{14}\)
vì \(\frac{1}{14}>\frac{1}{2014}\)
Nên \(1-\frac{1}{14}< 1-\frac{1}{2014}\)
Hay A > B
\(A=\frac{2013.10001}{2014.10001}=\frac{2013}{2014}=1-\frac{1}{2014}\)A=(2013.10001)/(2014.10001)=2013/2014=1-1/2014
B=(13.10101)/(14.10101)=13/14=1-1/14
Ta thấy 1/14>1/2014 => 1-1/2014>1-1/14 => A>B
A = (2 + 22) + (23 + 24 ) +…(2199 + 2200)
A = 6 + 22 (2 + 22 ) +… + 2198 (2 + 22)
A = 6 + 22 (6 ) +… + 2198 (6)
A = 6(1 + 22 +… + 2198)
Vậy A chia hết cho 6
\(a,\frac{20132013}{20142014}=\frac{2013.10001}{2014.10001}=\frac{2013}{2014}=1-\frac{1}{2014};\frac{131313}{141414}=\frac{13.10101}{14.10101}=\frac{13}{14}=1-\frac{1}{14}.\text{Vì: 14 bé hơn 2014 nên:}\frac{1}{14}>\frac{1}{2014}\Rightarrow\frac{20132013}{20142014}>\frac{131313}{141414}\)
\(C=2013^9+2013^9.2013=2013^9\left(2013+1\right)=2013^9.2014;D=2014^9.2014\text{ vì: 2013^9< 2014^9 nên: C bé thua D }\)
\(c,M=\frac{-7}{10^{2005}}+\frac{-15}{10^{2006}}=\frac{-7}{10^{2005}}+\frac{-7}{10^{2006}}+\frac{-8}{10^{2006}};N=\frac{-7}{10^{2005}}+\frac{-7}{10^{2006}}+\frac{-8}{10^{2005}}.Vì:10^{2006}>10^{2005}.Nên:\frac{-8}{10^{2006}}>\frac{-8}{10^{2005}}\Rightarrow M>N\)
Ta có \(A=\frac{20132013}{20142014}=\frac{20132013\div10001}{20142014\div10001}=\frac{2013}{2014}=1-\frac{1}{2014}\)
\(B=\frac{1313}{1414}=\frac{1313\div101}{1414\div101}=\frac{13}{14}=1-\frac{1}{14}\)
Ta thấy \(1=1;\frac{1}{14}>\frac{1}{2014}\Rightarrow1-\frac{1}{14}< 1-\frac{1}{2014}\)
Do đó \(\frac{20132013}{20142014}>\frac{1313}{1414}\)hay \(A>B\)
Lời giải:
a)
\(\frac{64}{73}=1-\frac{9}{73}=1-\frac{18}{146}\); \(\frac{45}{51}=1-\frac{6}{51}=1-\frac{18}{153}\)
Mà \(\frac{18}{146}> \frac{18}{153}\Rightarrow 1-\frac{18}{146}< 1-\frac{18}{153}\)
\(\Rightarrow \frac{64}{73}<\frac{45}{51}\)
b)
\(\frac{2323}{2424}=\frac{2300+23}{2400+24}=\frac{23(100+1)}{24(100+1)}=\frac{23}{24}=1-\frac{1}{24}\)
\(\frac{20132013}{20142014}=\frac{20130000+2013}{20140000+2014}=\frac{2013(10000+1)}{2014(10000+1)}=\frac{2013}{2014}=1-\frac{1}{2014}\)
Mà \(\frac{1}{24}>\frac{1}{2014}\Rightarrow 1-\frac{1}{24}< 1-\frac{1}{2014}\Rightarrow \frac{2323}{2424}< \frac{20132013}{20142014}\)
a) Ta có: \(\frac{2012}{2013}+\frac{1}{2013}=1\)
\(\frac{2013}{2014}+\frac{1}{2014}=1\)
Vì \(\frac{1}{2013}>\frac{1}{2014}\) nên \(\frac{2012}{2013}< \frac{2013}{2014}\)
Vậy: \(\frac{2012}{2013}< \frac{2013}{2014}\)
b) \(\frac{1006}{1007}+\frac{1}{1007}=1\)
\(\frac{2013}{2015}+\frac{2}{2015}=1\)
Mà \(\frac{1}{1007}=\frac{2}{2014}>\frac{2}{2015}\)
nên: \(\frac{1006}{1007}< \frac{2013}{2015}\)
Vậy:.......
\(\frac{2323}{2424}=\frac{23.101}{24.101}=\frac{23}{24}\)
\(\frac{20132013}{20142014}=\frac{2013.10001}{2014.10001}=\frac{2013}{2014}\)
Ta có:
\(1-\frac{23}{24}=\frac{24}{24}-\frac{23}{24}=\frac{1}{24}\)
\(1-\frac{2013}{2014}=\frac{2014}{2014}-\frac{2013}{2014}=\frac{1}{2014}\)
Vì \(\frac{1}{24}>\frac{1}{2014}\) nên \(\frac{23}{24}< \frac{2013}{2014}\)
Vậy \(\frac{2323}{2424}< \frac{20132013}{20142014}\)
Tính phần bù với 1 nhé
mình cũng trình bày giống bạn "Muôn cảm súc"