K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

14 tháng 2 2016

\(a.\)  Từ  \(x-2y=1\)  \(\Rightarrow\)  \(x=1+2y\)  \(\left(\text{*}\right)\)

Thay  \(x=1+2y\)  vào \(A\), khi đó, biểu thức \(A\)  trở thành

\(A=\left(1+2y\right)^2+y^2+4=1+4y+4y^2+y^2+4=5y^2+4y+5\)

\(A=5\left(y^2+\frac{4}{5}y+1\right)=5\left(y^2+2.\frac{2}{5}.y+\frac{4}{25}+\frac{21}{25}\right)=5\left(y+\frac{2}{5}\right)^2+\frac{21}{5}\ge\frac{21}{5}\)  với mọi  \(y\)

Dấu  \(''=''\)   xảy ra  \(\Leftrightarrow\)  \(\left(y+\frac{2}{5}\right)^2=0\)  \(\Leftrightarrow\)  \(y+\frac{2}{5}=0\)  \(\Leftrightarrow\)  \(y=-\frac{2}{5}\)

Thay  \(y=-\frac{2}{5}\)  vào \(\left(\text{*}\right)\), ta được \(x=\frac{1}{5}\)

Vậy,  \(A\)  đạt giá trị nhỏ nhất là  \(A_{min}=\frac{21}{5}\)  khi và chỉ khi   \(x=\frac{1}{5}\)  và  \(y=-\frac{2}{5}\)

\(b.\)  Gọi  \(Q\left(x\right)\)  là thương của phép chia và dư là \(r=ax+b\)  (vì dư trong phép chia cho  \(x^2-1\)  có bậc cao nhất là bậc nhất), với mọi  \(x\)  ta có:

\(x^{2008}-x^3+5=\left(x^2-1\right).Q\left(x\right)+ax+b\)   \(\left(\text{**}\right)\)

Với  \(x=1\)  thì  phương trình \(\left(\text{**}\right)\)  trở thành  \(5=a+b\)  \(\left(1\right)\)

Với  \(x=-1\)  thì phương trình  \(\left(\text{**}\right)\)  trở thành \(7=-a+b\)  \(\left(2\right)\)

Giải hệ phương trình  \(\left(1\right)\)  và  \(\left(2\right)\), ta được \(a=-1\)  và  \(b=6\)

Vậy, dư trong phép chia đa thức  \(x^{2008}-x^3+5\)  cho đa thức \(x^2-1\)  là  \(-x+6\)

 

19 tháng 8 2020

a) Ta có:

\(A\left(x\right)=x^3-30x^2-31x+1\)

\(A\left(x\right)=x^3-31x^2+x^2-31x+1\)

\(A\left(x\right)=\left(x^3-31x^2\right)+\left(x^2-31x\right)+1\)

\(A\left(x\right)=x^2.\left(x-31\right)+x.\left(x-31\right)+1\)

\(A\left(x\right)=\left(x-31\right).\left(x^2+x\right)+1\)

+ Thay \(x=31\) vào biểu thức \(A\left(x\right)\) ta được:

\(A\left(x\right)=\left(31-31\right).\left(31^2+31\right)+1\)

\(A\left(x\right)=0.992+1\)

\(A\left(x\right)=0+1\)

\(A\left(x\right)=1.\)

Vậy giá trị của biểu thức \(A\left(x\right)\)\(1\) tại \(x=31.\)

20 tháng 10 2016

1/ = x4 + 2x3 + 4x2 + 3x - 10 = (x4 - x3) + (3x3 - 3x2) + (7x2 - 7x) + (10x - 10)

= (x - 1)(x3 + 3x2 + 7x + 10) = (x - 1)[(x3 + 2x2) + (x2 + 2x) + (5x + 10)]

= (x - 1)(x + 2)(x2 + x + 5)

20 tháng 10 2016

2/ = (x- 2x4) + (x4 - 2x3) + (x3 - 2x2) + (x2 - 2x) + (x - 2) = (x - 2)(x4 + x3 + x2 + x + 1)

25 tháng 7 2018

Bài 2:

\(\left(5x+1\right)^2-\left(2xy-3\right)^2\)

\(=25x^2+10x+1-\left(2xy-3\right)^2\)

\(=25x^2+10x+1\left(4x^2y^2-12xy+9\right)\)

\(=25x^2+10x+1-4x^2y^2+12xy-9\)

\(=25x^2-4x^2y^2+10x+12xy-8\)

Bài 2: 

\(\left(x-1\right)\left(x^2+x+1\right)=x^2\left(x-9\right)+2x+6\)

\(=x^3-1=x^3-9x^2+2x+6\)

\(=x^3-9x^2+2x+6=x^3-1\)

\(=x^3-9x^2+2x+6+1=x^3-1+1\)

\(=x^3-9x^2+2x+7=x^3\)

\(=x^3-9x^2+2x+7-x^3=x^3-x^3\)

\(=-9x^2+2x+7=0\)

\(\Rightarrow x=-\frac{7}{9};x=1\)

2 tháng 7 2017

Có : \(\left|x+1\right|+\left|x+2\right|+.....+\left|x+9\right|\ge0\)

<=> \(10x\ge0\)

<=> \(x\ge0\)

Vậy , ta có thể phá trị tuyệt đối vì trị của nó không âm

=> \(x+1+x+2+x+3+.....+x+9=10x\)

=> \(9x+45=10x\)

<=> x = 45

2 tháng 7 2017

Dễ thấy: \(VT\ge0\Rightarrow VP\ge0\Rightarrow10x\ge0\Rightarrow x\ge0\)

\(pt\Leftrightarrow\left(x+1\right)+\left(x+2\right)+...+\left(x+9\right)=10x\)

\(\Leftrightarrow\left(x+x+...+x\right)+\left(1+2+...+9\right)=10x\)

\(\Leftrightarrow9x+45=10x\)

\(\Leftrightarrow9x-10x=-45\Leftrightarrow x=45\) (thỏa)