Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(ĐKXĐ:\hept{\begin{cases}x\ne3\\x\ne\pm2\end{cases}}\)
b) \(D=\left(\frac{2+x}{2-x}-\frac{2-x}{2+x}-\frac{4x^2}{x^2-4}\right)\div\left(\frac{x-3}{2-x}\right)\)
\(\Leftrightarrow D=\frac{\left(2+x\right)^2-\left(2-x\right)^2+4x^2}{\left(2-x\right)\left(2+x\right)}\cdot\frac{2-x}{x-3}\)
\(\Leftrightarrow D=\frac{4+4x+x^2-4+4x-x^2+4x^2}{\left(2+x\right)\left(x-3\right)}\)
\(\Leftrightarrow D=\frac{4x^2+8x}{\left(x+2\right)\left(x-3\right)}\)
\(\Leftrightarrow D=\frac{4x}{x-3}\)
c) Để D = 0
\(\Leftrightarrow\frac{4x}{x-3}=0\)
\(\Leftrightarrow4x=0\)
\(\Leftrightarrow x=0\)
Vậy để D = 0 \(\Leftrightarrow\)x = 0
d) Khi \(\left|2x-1\right|=5\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=5\\1-2x=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=6\\2x=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\left(ktm\right)\\x=-2\left(ktm\right)\end{cases}}\)
Vậy khi \(\left|2x-1\right|=5\Leftrightarrow D\in\varnothing\)
A= 2x^2 + 4x + xy + 2y
=(xy+2x2)+(2y+4x)
=x(y+2x)+2(y+2x)
=(x+2)(y+2x)
Thay x=88,y=-76 ta được:
A=(88+2)*(-76+2*88)
=90*100
=9 000
B= x^2 +xy - 7x - 7y
=(xy-7y)+(x2-7x)
=y(x-7)+x(x-7)
=(x-7)(y+x).Thay vào tính bình thường
\(A=\left[\frac{6x^2}{x^3-1}-\frac{2x-2}{x^2+x+1}-\frac{1}{x-1}\right]:\frac{x^2+9}{\left(x-1\right)\left(9-4x\right)}\)
\(=\left[\frac{6x^2}{x^3-1}-\frac{\left(2x-2\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}-\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)
\(=\frac{6x^2-\left(2x^2-4x+2\right)-x^2-x-1}{\left(x^2+x+1\right)\left(x-1\right)}\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)
\(=\frac{5x^2-2x^2+4x-2-x-1}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)
\(=\frac{3x^2+3x-3}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)
Biểu thức A bạn viết đúng chưa?
a/\(\Leftrightarrow2x^2+3x>3x\Leftrightarrow2x^2>0\Rightarrow\forall x\in R\) sao cho x khác 0 PT luôn đúng
b/\(\Leftrightarrow\left(\frac{x+1}{99}+1\right)+\left(\frac{x+4}{96}+1\right)+\left(\frac{x+6}{95}+1\right)\ge0\)
\(\Leftrightarrow\frac{x+100}{99}+\frac{x+100}{96}+\frac{x+100}{95}\ge0\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{96}+\frac{1}{95}\right)\ge0\)\(\Rightarrow x\ge-100\)
c/\(\Leftrightarrow x^2+4x+4< 2x^2+4x+4\)
\(\Leftrightarrow x^2< 2x^2\)
\(\Leftrightarrow0< x^2\).Với mọi x khác 0 PT luôn đúng
a) Ta có:
\(A\left(x\right)=x^3-30x^2-31x+1\)
\(A\left(x\right)=x^3-31x^2+x^2-31x+1\)
\(A\left(x\right)=\left(x^3-31x^2\right)+\left(x^2-31x\right)+1\)
\(A\left(x\right)=x^2.\left(x-31\right)+x.\left(x-31\right)+1\)
\(A\left(x\right)=\left(x-31\right).\left(x^2+x\right)+1\)
+ Thay \(x=31\) vào biểu thức \(A\left(x\right)\) ta được:
\(A\left(x\right)=\left(31-31\right).\left(31^2+31\right)+1\)
\(A\left(x\right)=0.992+1\)
\(A\left(x\right)=0+1\)
\(A\left(x\right)=1.\)
Vậy giá trị của biểu thức \(A\left(x\right)\) là \(1\) tại \(x=31.\)