Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)
\(\Rightarrow a^2+3-4a=0\)
=> (a - 3).(a - 1) = 0
=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)
Bình phương lên giải tiếp nhé!
c) Tương tư câu b nhé
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
1.
\(x^4-6x^2-12x-8=0\)
\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\pm\sqrt{5}\)
3.
ĐK: \(x\ge-9\)
\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)
\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)
Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)
\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)
\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)
\(\Leftrightarrow...\)
Tớ đã trả lời ở câu hỏi mới nhất r nên xin phép được xóa câu hỏi này nhé
ĐKXĐ: \(1\le x\le5\)
TH1: với \(x>4\Rightarrow\left\{{}\begin{matrix}\sqrt{-x^2+6x-5}\ge0\\8-2x< 0\end{matrix}\right.\) \(\Rightarrow\) BPT luôn đúng
\(\Rightarrow4< x\le5\)
TH2: Với \(1\le x\le4\Rightarrow8-2x>0\)
\(\Leftrightarrow-x^2+6x-5>\left(8-2x\right)^2\)
\(\Leftrightarrow5x^2-38x+69< 0\) \(\Rightarrow3< x< \frac{25}{6}\)
Kết hợp ĐK \(\Rightarrow3< x\le4\)
Vậy nghiệm của BPT đã cho là \(3< x\le5\)
\(\sqrt{-x^2+6x-5}>8-2x\)
\(\Leftrightarrow\hept{\begin{cases}-x^2+6x-5>0\\8-2x\le0\end{cases}}\left(1\right)\)hoặc \(\hept{\begin{cases}-x^2-5x+6>0\\8-2x< 0\\-x^2+6x-5>64-32x+4x^2\end{cases}\left(2\right)}\)
(1) cho nghiệm \(4\le x\le5\)
\(\left(2\right)\Leftrightarrow\hept{\begin{cases}-x^2+6x-5\ge0\\8-2x>0\\5x^2-38x+69< 0\end{cases}\Leftrightarrow\hept{\begin{cases}1\le x\le5\\x< 4\\3< x< \frac{23}{5}\end{cases}\Leftrightarrow}3< x< 4}\)
Hợp nghiệm (1) và (2) ta được \(3< x\le5\)