Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(\sqrt{1}=1;\sqrt{2}+\sqrt{3}+\sqrt{4}< 3.\sqrt{4}=6\)\(;\sqrt{5}+\sqrt{6}+...+\sqrt{9}< 5.\sqrt{9}=15\)
\(\Rightarrow\sqrt{1}+\sqrt{2}+...+\sqrt{9}< 1+6+15=22\)(1)
Cung co:\(5.\sqrt{5}>5.\sqrt{4}=10\)\(\Rightarrow5.\sqrt{5}+12>10+12=22\)(2)
Tu (1) va (2) =>....
\(\sqrt{8}<\sqrt{9}=3\)
\(\sqrt{5}+1>\sqrt{4}+2=3=\sqrt{9}\)
=> \(\sqrt{8}<\sqrt{5}+1\)
\(\sqrt{8}=4\)
\(\sqrt{5}+1=5+1=6\)
\(\Rightarrow\)\(4< 6\)hay \(\sqrt{8}< \sqrt{5}+1\)
Học tốt nhé bạn !
Để mình chuộc lỗi nhé >.<
Ta có :
\(\sqrt{8}< \sqrt{9}=3=2+1=\sqrt{4}+1< \sqrt{5}+1\)
Vậy \(\sqrt{8}< \sqrt{5}+1\)
Chúc bạn học tốt ~
Ta có \(\sqrt{8}\)<\(\sqrt{9}\)= 3 = 2+1 = \(\sqrt{4}\)+ 1 (*)
Ta có : \(\sqrt{4}\)<\(\sqrt{5}\)
=> \(\sqrt{4}\)+1 < \(\sqrt{5}\)+1 (**)
Từ (*);(**) => \(\sqrt{8}\)< \(\sqrt{4}\)+1 < \(\sqrt{5}\)+1
=> \(\sqrt{8}\)< \(\sqrt{5}\)+1
Ta có\(8< 16\Rightarrow\sqrt{8}< \sqrt{16}=4\)
và \(5< 9\Rightarrow\sqrt{5}< \sqrt{9}=3\)
\(\Rightarrow\sqrt{8}-\sqrt{5}< \sqrt{16}-\sqrt{9}=4-3=1\)
Vậy \(\sqrt{8}-\sqrt{5}< 1\)
Ta có \(\sqrt{63-27}=\sqrt{36}=6\)
lại có\(63< 64\Rightarrow\sqrt{63}< \sqrt{64}=8\)và \(27>4\Rightarrow\sqrt{27}>\sqrt{4}=2\)
\(\Rightarrow\sqrt{63}-\sqrt{27}< \sqrt{64}-\sqrt{4}=8-2=6\)
mà\(\sqrt{63-27}=6\Rightarrow\sqrt{63}-\sqrt{27}< \sqrt{63-27}\)
Vậy\(\sqrt{63}-\sqrt{27}< \sqrt{63-27}\)