K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2016

Bạn vào phần câu hỏi tương tự, sẽ rõ đáp án ngay thôi. Vì dạng là như nhau mà ^^^

30 tháng 12 2015

\(M=1+2+2^2+...+2^{50}\)

\(\Rightarrow2M=2.\left(1+2+2^2+...+2^{50}\right)\)

\(2M=2+2^2+2^3+...+2^{51}\)

\(\Rightarrow2M-M=\left(2+2^2+2^3+...+2^{51}\right)-\left(1+2+2^2+...+2^{50}\right)\)

\(\Rightarrow M=2^{51}-1<2^{51}=N\)

Vậy M < N.

1 tháng 8 2018

a, Ta có : \(9^{2000}=\left(3^2\right)^{2000}=3^{4000}\)

\(3^{4000}=3^{4000}\)

\(\Rightarrow3^{4000}=9^{2000}\)

Vậy \(3^{4000}=9^{2000}\)

b, Ta có : \(2^{332}< 2^{333}=2^{3.111}=\left(2^3\right)^{111}=8^{111}\)

\(3^{223}>3^{222}=3^{2.111}=\left(3^2\right)^{111}=9^{111}\)

\(8^{111}< 9^{111}\)

\(\Rightarrow2^{333} < 3^{222}\)

\(\Rightarrow2^{332}< 3^{223}\)

Vậy \(2^{332}< 3^{223}\)

1 tháng 8 2018

a) \(3^{4000}\)\(9^{2000}\)

ta có:\(9^{2000}=\left(3^2\right)^{2000}=9^{2000}\)

=>\(9^{2000}=9^{2000}\Leftrightarrow3^{4000}=9^{2000}\)

b)\(2^{332}\)\(3^{223}\)

\(2^{332}\) <\(2^{333}\)\(2^{333}=\left(2^3\right)^{111}=8^{111}\)(1)

\(3^{223}\) >\(3^{222}\)\(3^{222}=\left(3^2\right)^{111}=9^{111}\)(2)

từ (1 và 2),suy ra:8111<9111 hay 2332<3223

10 tháng 10 2018

2332<2333=8111<9111=3222<3223

sai đề rùi

3 tháng 3 2018

so sanh A = a*b /a^2+b^2 va B =  a^2+b^2/(a+b)^2

4 tháng 3 2018

a, Có : (1/60)^200 = [(1/2)^4]^200 = (1/2)^800

Vì 0 < 1/2 < 1 nên (1/2)^800 > (1/2)^1000

=> (1/16)^200 > (1/2)^1000

Tk mk nha

4 tháng 3 2018

a) \(\left(\frac{1}{16}\right)^{200}=\left(\frac{1}{2}\right)^{800}< \left(\frac{1}{2}\right)^{1000}\)