Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Nếu \(\frac{a}{b}>1\) thì \(a>b\)\(\Rightarrow\frac{a}{b}>\frac{a+n}{b+n}\)
* Nếu \(\frac{a}{b}=1\) thì \(a=b\)\(\Rightarrow\frac{a}{b}=\frac{a+n}{b+n}=1\)
* Nếu \(\frac{a}{b}< 1\) thì \(a< b\)\(\Rightarrow\frac{a}{b}< \frac{a+n}{b+n}\)
Chứng minh rằng:
a) \(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\left(n,a\in Nsao\right)\)
ta có \(\frac{1}{n}-\frac{1}{n+a}=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}=\frac{n+a-n}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)
vậy \(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
\(\frac{a}{b}\)= \(\frac{a\left(a+n\right)}{b\left(b+n\right)}\)= \(\frac{ab+an}{b^2+bn}\)
\(\frac{a+n}{b+n}\)= \(\frac{\left(a+n\right)b}{\left(b+n\right)b}\)= \(\frac{ab+nb}{b^2+bn}\)
Nếu a < b thì ab + an < ab + nb => \(\frac{a}{b}\)< \(\frac{a+n}{b+n}\)
Nếu a > b thì ab + an > ab + nb => \(\frac{a}{b}\)> \(\frac{a+n}{b+n}\)
Nếu a = b thì ab + an = ab + nb => \(\frac{a}{b}\)= \(\frac{a+n}{b+n}\)
Xét a>b, ta đặt a=b+m=>a+n=b+m+n
vậy: a/b=(b+m)/b= 1+m/b.....(3)
(a+n)/(b+n)=(b+m+n)/(b+n)=(b+n+m)/(b+n)...
So sánh (3) và (4) cho ta a/b<(a+n)/(b+n)
Nếu a là nguyên âm thì bạn có trừong hợp ngược lại
Nếu a=0 thì a/b=0 khi đó (a+1)/(b+1)=1/(b+1) >0=a/b
Tuơng tự khi a=0 thì (a+n)/b+n)=n/(b+n)>a/b
1,
Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)
\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)
\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)
Dấu "=" xảy ra khi x = 0, y = 13
Vậy Pmin = 6/7 khi x = 0, y = 13
2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)
Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6
3,
Ta có: \(10\le n\le99\)
\(\Rightarrow20\le2n\le198\)
\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)
\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)
\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)
Ta thấy chỉ có 36 là số chính phương
Vậy n = 32
4,
ÁP dụng TCDTSBN ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)
\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)
\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)
Vậy B = 8
Ta có: \(\dfrac{a}{b}< \dfrac{a+n}{b+n}\Leftrightarrow a\left(b+n\right)< b\left(a+n\right)\)\(\Leftrightarrow ab+an< ab+bn\)\(\Leftrightarrow a< b\) (vì \(n>0\)).
Vậy \(\dfrac{a}{b}< \dfrac{a+n}{b+n}\Leftrightarrow a< b.\)
Tương tự
\(\dfrac{a}{b}>\dfrac{a+n}{b+n}\Leftrightarrow a>b\) ;
\(\dfrac{a}{b}=\dfrac{a+n}{b+n}\Leftrightarrow a=b\).
Câu hỏi của Hà Huệ - Toán lớp 7 - Học toán với OnlineMath
Bài toán không đủ dữ kiện, vì a>b sẽ có kết quả khác với a<b
Tìm trước khi hỏi , google-sama chưa tính phí mà !
Câu hỏi của phạm minh anh - Toán lớp 7 - Học toán với OnlineMath
\(\frac{a}{b}\)= \(\frac{a\left(a+n\right)}{b\left(b+n\right)}\) = \(\frac{ab+an}{b^2+bn}\)
\(\frac{a+n}{b+n}\)= \(\frac{\left(a+n\right)b}{\left(b+n\right)b}\)= \(\frac{ab+nb}{b^2+bn}\)
Nếu a < b thì ab + an < ab + nb => \(\frac{a}{b}\)< \(\frac{a+n}{b+n}\)
Nếu a > b thì ab + an > ab + nb => \(\frac{a}{b}\)> \(\frac{a+n}{b+n}\)
Nếu a = b thì ab + an = ab + nb => \(\frac{a}{b}\)= \(\frac{a+n}{b+n}\)