Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)
\(A=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \frac{1}{2^2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\right)\)
\(A< \frac{1}{4}\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)=\frac{1}{4}\left(1-\frac{1}{n}\right)\)
\(A< \frac{1}{4}-\frac{1}{4n}\)
Lại có \(n>0\) nên \(\frac{1}{4n}>0\)
\(\Rightarrow\)\(\frac{1}{4}-\frac{1}{4n}< \frac{1}{4}\)
Vậy \(A< \frac{1}{4}\)
Tìm trước khi hỏi , google-sama chưa tính phí mà !
Câu hỏi của phạm minh anh - Toán lớp 7 - Học toán với OnlineMath
\(\frac{a}{b}\)= \(\frac{a\left(a+n\right)}{b\left(b+n\right)}\) = \(\frac{ab+an}{b^2+bn}\)
\(\frac{a+n}{b+n}\)= \(\frac{\left(a+n\right)b}{\left(b+n\right)b}\)= \(\frac{ab+nb}{b^2+bn}\)
Nếu a < b thì ab + an < ab + nb => \(\frac{a}{b}\)< \(\frac{a+n}{b+n}\)
Nếu a > b thì ab + an > ab + nb => \(\frac{a}{b}\)> \(\frac{a+n}{b+n}\)
Nếu a = b thì ab + an = ab + nb => \(\frac{a}{b}\)= \(\frac{a+n}{b+n}\)
\(\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{2}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}\)
\(=\frac{1}{2}\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)
Ta có đpcm.
Ta có
\(A=\frac{1}{14}+\frac{1}{29}+...+\frac{1}{n^2+\left(n+1\right)^2+\left(n+2\right)^2}+...+\frac{1}{1877}\)
\(=\frac{1}{1^2+2^2+3^2}+\frac{1}{2^2+3^2+4^2}+...+\frac{1}{n^2+\left(n+1\right)^2+\left(n+2\right)^2}+...+\frac{1}{24^2+25^2+26^2}\)
\(B=n^2+\left(n+1\right)^2+\left(n+2\right)^2=3n^2+6n+5\left(1\right)\)
+ Với \(n\ge1\)từ (1) ta có \(B\le3n^2+9n+6=3\left(n^2+3n+2\right)=3\left(n+1\right)\left(n+2\right)\)Từ đó
\(A>\frac{1}{3}\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{\left(n+1\right)\left(n+2\right)}+...+\frac{1}{24\cdot25}+\frac{1}{25\cdot26}\right)=\frac{1}{3}C\)
Với \(C=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{\left(n+1\right)\left(n+2\right)}+...+\frac{1}{24\cdot25}+\frac{1}{25\cdot26}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{25}-\frac{1}{26}=\frac{1}{2}-\frac{1}{26}=\frac{6}{13}\)
\(\Rightarrow A>\frac{1}{3}\cdot\frac{6}{13}=\frac{2}{13}>0,15\)
+ Với \(n\ge1\)từ (1) ta có \(B>2n^2+6n+4=2\left(n^2+3n+2\right)=2\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow A< \frac{1}{2}\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{\left(n+1\right)\left(n+2\right)}+...+\frac{1}{24\cdot25}+\frac{1}{25\cdot26}\right)=\frac{1}{2}C\)
Với \(C=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{\left(n+1\right)\left(n+2\right)}+...+\frac{1}{24\cdot25}+\frac{1}{25\cdot26}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{25}-\frac{1}{26}=\frac{1}{2}-\frac{1}{26}=\frac{6}{13}\)
\(\Rightarrow A< \frac{1}{2}\cdot\frac{6}{13}=\frac{3}{13}< 0,25\)
Vậy \(0,15< A< 0,25\)
Lời giải:
\(A=\frac{2-1}{2}.\frac{3-1}{3}.\frac{4-1}{4}.....\frac{n+1-1}{n+1}=\frac{1.2.3....n}{2.3.4...n(n+1)}=\frac{1}{n+1}\)
\(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{2002}-1\right)\left(\frac{1}{2003}-1\right)\)
\(=\left(-\frac{1}{2}\right)\left(-\frac{2}{3}\right)...\left(-\frac{2001}{2002}\right)\left(-\frac{2002}{2003}\right)\)
\(=\frac{-1.\left(-2\right).....\left(-2001\right)\left(-2002\right)}{2.3....2002.2003}\)
\(=\frac{1}{2003}\)
ta có \(\frac{1}{n}-\frac{1}{n+a}=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}=\frac{n+a-n}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)
vậy \(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)