Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{7}{40}=\frac{7x3}{40x3}=\frac{21}{120}\) và \(\frac{11}{120}\)
b, \(\frac{24}{146}=\frac{12}{73}=\frac{12x13}{73x13}=\frac{156}{949}\)
\(\frac{6}{13}=\frac{6x73}{13x73}=\frac{438}{949}\)
Mình giải ý b bài 1:
\(\dfrac{\dfrac{5}{47}+\dfrac{5}{37}-\dfrac{5}{17}+\dfrac{5}{27}}{\dfrac{75}{47}+\dfrac{75}{27}-\dfrac{75}{17}+\dfrac{75}{37}}\)=\(\dfrac{5\left(\dfrac{1}{47}+\dfrac{1}{37}-\dfrac{1}{17}+\dfrac{1}{27}\right)}{75\left(\dfrac{1}{47}+\dfrac{1}{27}-\dfrac{1}{17}+\dfrac{1}{37}\right)}\)=\(\dfrac{5}{75}=\dfrac{1}{15}\)
Ta thấy: \(\left(\sqrt{a}+\sqrt{b}\right)^2=a+b+2\sqrt{ab}\)
\(\left(\sqrt{a+b}\right)^2=a+b\)
Nếu: \(2\sqrt{ab}>0\left(a,b>0\right)\text{ thì: }\left(\sqrt{a}+\sqrt{b}\right)^2>\left(\sqrt{a+b}\right)^2\)
<=>\(\sqrt{a}+\sqrt{b}>\sqrt{a+b}\)
\(B=\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{5}}+....+\frac{1}{\sqrt{2013}+\sqrt{2015}}\)
\(=\frac{1}{2}.\left(\frac{2}{\sqrt{1}+\sqrt{3}}+\frac{2}{\sqrt{3}+\sqrt{5}}+...+\frac{2}{\sqrt{2013}-\sqrt{2014}}\right)\)
\(=\frac{1}{2}.\left(-1+\sqrt{3}-\sqrt{3}+\sqrt{5}-...-\sqrt{2013}+\sqrt{2015}\right)\)
=\(\frac{\sqrt{2015}-1}{2}\)
Xét hiệu: B-A=\(\frac{\sqrt{2015}-1}{2}-\sqrt{481}=\frac{\sqrt{2015}-1}{2}-\frac{\sqrt{1924}}{2}=\frac{\sqrt{2015}-\left(\sqrt{1}+\sqrt{1924}\right)}{2}>\frac{\sqrt{2015}-\sqrt{1+1924}}{2}\)
\(=\frac{\sqrt{2015}-\sqrt{1925}}{2}>0\Rightarrow A>B\)
a) Ta có: \(\frac{-9}{80}=\frac{\left(-9\right)x4}{80x4}=\frac{-36}{320}\) và \(\frac{17}{320}\)
b) Ta có: \(\frac{-7}{10}=\frac{\left(-7\right)x33}{10x33}=\frac{-231}{330}\) và \(\frac{1}{33}=\frac{1x10}{33x10}=\frac{10}{330}\)
c) Ta có:
\(\frac{-5}{14}=\frac{\left(-5\right)x10}{14x10}=\frac{-50}{140}\)
\(\frac{3}{20}=\frac{3x7}{20x7}=\frac{21}{140}\)
\(\frac{9}{70}=\frac{9x2}{70x2}=\frac{18}{140}\)
d) Ta có:
\(\frac{10}{42}=\frac{10x22}{42x22}=\frac{220}{924}\)
\(\frac{-3}{28}=\frac{\left(-3\right)x33}{28x33}=\frac{-99}{924}\)
\(\frac{-55}{132}=\frac{\left(-55\right)x7}{132x7}=\frac{-385}{924}\)
Đặt ưcln(n+3,n+4)=d(d€N*)
=>{n+3,n+4 chia hếtcho d
=>{4n+12,3n+12 chia hết cho d
=>4n+12-(3n+12)chia hết cho d
=>4n+12-3n-12 chia hết cho d
=>1chia hết cho d
=>d€ Ư(1)={ +-1}
Vậy n+3,n+4 nguyên tố cùng nhau
b) Gọi d là ƯC ( 2n + 3 ; 6n + 8 )
=> ( 2n + 3 ) \(⋮\)d và ( 6n +8 ) \(⋮\)d
=> 3 ( 2n + 9 ) \(⋮\)d và ( 6n +8 ) \(⋮\)d
=> [ ( 6n + 9 ) - ( 6n + 8 ) ] \(⋮\)d
=> 1 \(⋮\) d ; d \(\in\) N*
=> d = 1
Vậy ƯCLN ( 2n + 3 ; 6 n+ 8 ) = 1 => \(\frac{2n+3}{6n+8}\) là phân số tối giản.
ko bit
16 : 9 = 1,78 ; 24 : 13 = 1,84
nên 16/9 < 24/13
27 : 82 = 0,32 ; 26 : 75 = 0,34
nên 27/82 >26/75
dấu (/) là phần nhá
đây là cách làm ở violympic nên làm tắt nha !