Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d, Vì B=10^1993+1/10^1992+1 > 1 =>10^1993+1/10^1992+1>10^1993+1+9/10^1992+1+9 = 10^1993+10/10^1992+10= 10. (10^1992+1)/10. (10^1991+1) = 10^1992+1/10^1991+1=A Vậy A=B
cau d B>1 ta co tinh chat (\(\dfrac{a}{b}>\dfrac{a+m}{b+m}\) ) B> \(\dfrac{10^{1993}+1+9}{10^{1992}+1+9}\)\(=\dfrac{10^{1993}+10}{10^{1992}+10}\)=\(\dfrac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}\)=\(\dfrac{10^{1992}+1}{10^{1991}+1}\)=A
Suy ra B>A(chuc ban hoc goi nhe)
Có 20/39>1/2; 18/41<1/2 suy ra 20/39>18/41
22/27>22/29
18/43 = 1- 25/43
14/39 = 1- 25/ 39
mà 25/43< 25/43 suy ra 18/43> 14/39 (vì cùng 1 số mà trừ đi số nhỏ hơn thì sẽ lớn hơn số đó mà lại đem trừ đi số lớn hơn)
Vậy A>B
b/ Ta có
\(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}\)
\(=\frac{4}{8^4}-\frac{4}{8^3}< 0\)
Vậy A < B
c/ Đặt \(10^7=a\)thì ta có
\(A=\frac{a+5}{a-8};B=\frac{10a+6}{10a-7}\)
Giả sử A>B thì ta có
\(\frac{a+5}{a-8}>\frac{10a+6}{10a-7}\)
\(\Leftrightarrow10a^2+43a-35>10a^2-574a-348\)
\(\Leftrightarrow617a+313>0\)(đúng)
Vậy A>B
c/ Đặt \(10^{1991}=a\)thì ta có
\(A=\frac{10a+1}{a+1};B=\frac{100a+1}{10a+1}\)
Giả sử A>B thì ta có
\(\frac{10a+1}{a+1}>\frac{100a+1}{10a+1}\)
\(\Leftrightarrow\left(10a+1\right)^2>\left(100a+1\right)\left(a+1\right)\)
\(\Leftrightarrow-81a>0\)(sai)
Vậy A < B
a/ Thì quy đồng là ra nhé
a,b,c,d giống nhau cùng nhân A và B với 1 số nào đấy tách ra r` so sạmh
Khi tử số = tử số, mẫu số của phân số nào lớn hơn thì phân số đó bé hơn
1/ a/ ta có: \(\frac{20}{39}>\frac{14}{39}\left(20>14\right)\);
\(\frac{22}{27}>\frac{22}{29}\left(27< 29\right)\);
\(\frac{18}{23}>\frac{18}{41}\left(23< 41\right)\).
=> \(\frac{20}{39}+\frac{22}{27}+\frac{18}{23}>\frac{14}{39}+\frac{22}{29}+\frac{18}{41}\)
b/ \(\left(\frac{3}{8}\right)^3=\left(\frac{3}{8}\right)^3\);
\(\left(\frac{3}{8}\right)^4=\left(\frac{3}{8}\right)^4\);
\(\left(\frac{4}{8}\right)^4>\left(\frac{4}{8}\right)^3\)
=> A > B
Mấy bài còn lại cứ làm tương tự...