Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}==\left(\frac{7}{8^4}-\frac{3}{8^4}\right)-\left(\frac{7}{8^3}-\frac{3}{8^3}\right)=\frac{4}{8^4}-\frac{4}{8^3}< 0\)
Vậy A < B
b, \(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Vì \(10^7-8< 10^8-7\Rightarrow\frac{1}{10^7-8}>\frac{1}{10^8-7}\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\Rightarrow A>B\)
c,Áp dụng nếu \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{a+n}\) có:
\(B=\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}=\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)
Vậy A < B
b: \(A=\dfrac{10^7-8+13}{10^7-8}=1+\dfrac{13}{10^7-8}\)
\(B=\dfrac{10^8-7+13}{10^8-7}=1+\dfrac{13}{10^8-7}\)
mà \(10^7-8< 10^8-7\)
nên A>B
c: \(\dfrac{1}{10}A=\dfrac{10^{1992}+1}{10^{1992}+10}=1-\dfrac{9}{10^{1992}+10}\)
\(\dfrac{1}{10}B=\dfrac{10^{1993}+1}{10^{1993}+10}=1-\dfrac{9}{10^{1993}+10}\)
mà \(\dfrac{9}{10^{1992}+10}>\dfrac{9}{10^{1993}+10}\)
nên A<B
Vì 18/91 < 18/90 =1/5
23/114>23115=1/5
vậy 18/91<1/5<23/114
suy ra 18/91<23/114
vì 21/52=210/520
Mà 210/520=1-310/520
213/523=1-310/523
310/520>310/523
vậy 210/520<213/523
suy ra 21/52<213/523
Giải:
a) A=1718+1/1719+1
17A=1719+17/1719+1
17A=1719+1+16/1719+1
17A=1+16/1719+1
Tương tự:
B=1717+1/1718+1
17B=1718+17/1718+1
17B=1718+1+16/1718+1
17B=1+16/1718+1
Vì 16/1719+1<16/1718+1 nên 17A<17B
⇒A<B
b) A=108-2/108+2
A=108+2-4/108+2
A=1+-4/108+2
Tương tự:
B=108/108+4
B=108+4-4/108+1
B=1+-4/108+1
Vì -4/108+2>-4/108+1 nên A>B
c)A=2010+1/2010-1
A=2010-1+2/2010-1
A=1+2/2010-1
Tương tự:
B=2010-1/2010-3
B=2010-3+2/2010-3
B=1+2/2010-3
Vì 2/2010-3>2/2010-1 nên B>A
⇒A<B
Chúc bạn học tốt!
17A=1719+1+16/1719+1
17A=1+16/1719+1
phần in nghiêng mình không hiểu lắm, bn giải thích cho mình được ko?
a, \(x\cdot\dfrac{-5}{8}=\dfrac{15}{32}\)
\(x=\dfrac{15}{32}:\dfrac{-5}{8}\)
\(x=\dfrac{-3}{4}\)
b, \(\dfrac{3}{10}:x=\dfrac{-9}{20}\)
\(x=\dfrac{3}{10}:\dfrac{-9}{20}\)
\(x=-\dfrac{2}{3}\)
c, \(\dfrac{-1}{4}x+\dfrac{4}{5}=\dfrac{3}{4}\)
\(\dfrac{-1}{4}x=\dfrac{3}{4}-\dfrac{4}{5}\)
\(\dfrac{-1}{4}x=-\dfrac{1}{20}\)
\(x=-\dfrac{1}{20}:\dfrac{-1}{4}\)
\(x=\dfrac{1}{5}\)
d, \(\dfrac{-7}{8}+\dfrac{2}{3}:x=\dfrac{3}{5}\cdot\dfrac{-5}{12}\)
\(\dfrac{-7}{8}+\dfrac{2}{3}:x=-\dfrac{1}{4}\)
\(\dfrac{2}{3}:x=-\dfrac{1}{4}+\dfrac{-7}{8}\)
\(\dfrac{2}{3}:x=\dfrac{5}{8}\)
\(x=\dfrac{2}{3}:\dfrac{5}{8}\)
\(x=\dfrac{16}{15}\)
#YVA6
\(a,x.\dfrac{-5}{8}=\dfrac{15}{32}\)
\(\Leftrightarrow x=\dfrac{15}{32}:\dfrac{-5}{8}\)
\(\Leftrightarrow x=\dfrac{15}{32}.\dfrac{-8}{5}\)
\(\Leftrightarrow x=-\dfrac{3}{4}\)
\(b,\dfrac{3}{10}:x=-\dfrac{9}{20}\)
\(\Leftrightarrow x=\dfrac{3}{10}:\dfrac{-9}{20}\)
\(\Leftrightarrow x=\dfrac{3}{10}.\dfrac{-20}{9}\)
\(\Leftrightarrow x=-\dfrac{2}{3}\)
\(c,-\dfrac{1}{4}x+\dfrac{4}{5}=\dfrac{3}{4}\)
\(\Leftrightarrow-\dfrac{1}{4}x=\dfrac{3}{4}-\dfrac{4}{5}\)
\(\Leftrightarrow-\dfrac{1}{4}x=-\dfrac{1}{20}\)
\(\Leftrightarrow x=-\dfrac{1}{20}\times\left(-4\right)\)
\(\Leftrightarrow x=\dfrac{1}{5}\)
\(d,-\dfrac{7}{8}+\dfrac{2}{3}:x=\dfrac{3}{5}.\dfrac{-5}{12}\)
\(\Leftrightarrow-\dfrac{7}{8}+\dfrac{2}{3}:x=-\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{2}{3}:x=-\dfrac{1}{4}+\dfrac{7}{8}\)
\(\Leftrightarrow\dfrac{2}{3}:x=\dfrac{5}{8}\)
\(\Leftrightarrow x=\dfrac{2}{3}:\dfrac{5}{8}\)
\(\Leftrightarrow x=\dfrac{16}{15}\)
d, Vì B=10^1993+1/10^1992+1 > 1 =>10^1993+1/10^1992+1>10^1993+1+9/10^1992+1+9 = 10^1993+10/10^1992+10= 10. (10^1992+1)/10. (10^1991+1) = 10^1992+1/10^1991+1=A Vậy A=B
cau d B>1 ta co tinh chat (\(\dfrac{a}{b}>\dfrac{a+m}{b+m}\) ) B> \(\dfrac{10^{1993}+1+9}{10^{1992}+1+9}\)\(=\dfrac{10^{1993}+10}{10^{1992}+10}\)=\(\dfrac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}\)=\(\dfrac{10^{1992}+1}{10^{1991}+1}\)=A
Suy ra B>A(chuc ban hoc goi nhe)