K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2016

A=\(\frac{2014}{2014^a}+\frac{2014}{2014^b}\)=B=\(\frac{2013}{2015^a}\)+\(\frac{2015}{2013^b}\)

17 tháng 4 2016

Ta có: 2014/\(2014^a\)+2014/2014^b= 2013/2014^a + 1/2014^a +2015/2014^a - 1/2014^a

                                                        =(2013/2014^a + 2015/2014^b) + ( 1/2014^a + 1/2014^b)

                                                       =                   B                                 + (1/2014^a + 1/2014^b)

   *Nếu a=b thì A=B

   *Nếu a>b thì (1/2014^a + 1/2014^b) >0

                      \(\Rightarrow\) A< B

   *Nếu a<b thì (1/2014^a + 1/2014^b)>0

                     \(\Rightarrow\) A>B

14 tháng 4 2016

2016

20 tháng 6 2019

\(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{2014}{2^{2014}}\)

\(\Rightarrow2A=1+\frac{2}{2}+\frac{3}{2^2}+...+\frac{2014}{2^{2013}}\)

\(\Rightarrow2A-A=\left(1+\frac{2}{2}+\frac{3}{2^2}+...+\frac{2014}{2^{2013}}\right)-\left(\frac{1}{2}+\frac{2}{2^2}+...+\frac{2014}{2^{2014}}\right)\)

\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}-\frac{2014}{2^{2014}}\)

Đặt \(B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\)

\(\Rightarrow2B=2+1+...+\frac{1}{2^{2012}}\)

\(\Rightarrow2B-B=\left(2+1+...+\frac{1}{2^{2012}}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^{2013}}\right)\)

\(\Rightarrow B=2-\frac{1}{2^{2013}}< 2\)

\(\Rightarrow B< 2\)

\(\Rightarrow A< 2-\frac{2014}{2^{2014}}< 2\)

\(\Rightarrow A< 2\left(đpcm\right)\)

12 tháng 4 2016

Tớ nghĩ là A >b

16 tháng 9 2016

phải có cách giải mà phải đúng nửa nhak

 

12 tháng 4 2016

A=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2013}-\frac{1}{2014}\)

 

20 tháng 4 2016

tick đi mình giải cho

 

 

12 tháng 4 2016

\(2A=2^{2015}-2^{2014}-...-2^2-2\)

\(2A-A=2^{2015}+1>2\)

13 tháng 4 2016

 

A=-1/2*-2/3*-3/4*..*-2013/2014

A=-1*-2*-3*...*-2013/2*3*4*...*2014

A=-1/2014

ta có(-1)^2015=-1

B=-1/2015>-1/2014=A

nên A<B

13 tháng 4 2016

P=2013-2013=0

31 tháng 3 2016

A<1 vì 14^15+3<14^16+3 mà B>1 vì 2016^2014+1>2016^2013+1

nên A<B

 

 

1 tháng 4 2016

\(\frac{24\cdot47-23}{24+47\cdot23}.\frac{3+\frac{3}{7}-\frac{3}{11}+\frac{3}{1001}-\frac{3}{13}}{\frac{9}{1001}-\frac{9}{13}+\frac{9}{7}-\frac{9}{11}+9}\)

\(=\frac{24\cdot\left(24+23\right)-23}{24+\left(24+23\right)\cdot23}\cdot\frac{3\left(1+\frac{1}{7}-\frac{1}{11}+\frac{1}{1001}-\frac{1}{13}\right)}{9\left(\frac{1}{1001}-\frac{1}{13}+\frac{1}{7}-\frac{1}{11}+1\right)}\)

\(=\frac{24^2+24\cdot23-23}{24+24\cdot23+23^2}\cdot\frac{3}{9}\) \(=\frac{24^2+23\cdot\left(24-1\right)}{\left(23+1\right)\cdot24\cdot23^2}\cdot\frac{1}{3}=1\cdot\frac{1}{3}=\frac{1}{3}\)

1 tháng 4 2016

giúp giùm mình đi