Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.
A:
20032003+1=20032002.2003+1=20032002+1
20032004+1=20032002.2003.2003+1=20032002.2003+1(loại số 2003 thứ hai của cả mẫu số và tử số)
B:
20032002+1=20032002+1
20032003+1=20032002.2003+1
Suy ra: A=B
Ta có :
\(\frac{1+2+3+...+a}{a}<\frac{1+2+3+...+b}{b}\)
\(\Leftrightarrow\frac{a\left(a+1\right)}{a}<\frac{b\left(b+1\right)}{b}\)
<=> a + 1 < b + 1
<=> a < b
có 1+2+3+...+a/a<1+2+3+...+b/b
=>(a+1)(a-1+1):2/a<(b+1)(b-1+1):2/b
<=>(a+1)a:2/a<(b+1)b;2/b
<=>a+1<b+1
<=>a<b
vậy a<b
A> \(\frac{10^n-2-2}{10^n-1-2}=\frac{10^n-4}{10^n-3}=B\)
=> A>B
A<1 vì 14^15+3<14^16+3 mà B>1 vì 2016^2014+1>2016^2013+1
nên A<B
Đáp án C
5 − 2 − a > 5 + 2 b ⇔ 5 − 2 − a 5 − 2 b > 5 + 2 b 5 − 2 b ⇔ 5 − 2 b − a > 1
do 5 − 2 < 1 ⇒ b − a < 0 ⇒ a > b
\(B=\dfrac{20^{19}+1}{20^{20}+1}< \dfrac{20^{19}+1+19}{20^{20}+1+19}=\dfrac{20^{19}+20}{20^{20}+20}\)
\(B< \dfrac{20.\left(20^{18}+1\right)}{20.\left(20^{19}+1\right)}\)
\(B< \dfrac{20^{18}+1}{20^{19}+1}\)
\(B< A\)
Ta có: A=\(\frac{14^{15}+3}{14^{15}+3}\) = 1
B=\(\frac{14^{16}+5}{14^{17}+5}\) < 1 => B<1=A => B<A.
\(2A=2^{2015}-2^{2014}-...-2^2-2\)
\(2A-A=2^{2015}+1>2\)