K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2016

Ta có \(\left(9+1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)

\(=\frac{1}{8}\left(9-1\right)\left(9+1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)

\(=\frac{1}{8}\left(9^2-1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)

cứ như thế

\(=\frac{1}{8}\left(9^{64}-1\right)< 9^{64}-1\)=>đpcm

6 tháng 4 2019

964 - 1 = (932 + 1)(932 - 1) = ... = (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1)(9 + 1)(9 - 1) > (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92​ + 1)(9 + 1)

6 tháng 4 2019

964=(932​+1).(932-1)

=(932+1)(916+1)(916-1)

=(932+1)(916+1)(98+1)(98-1)

=(932+1)(916+1)(98+1)(94+1)(94-1)

=(932+1)(916+1)(98+1)(94+1)(92+1)(92-1)

=(932+1)(916+1)(98+1)(94+1)(92+1)(9+1)(9-1)

Vì (932+1)(916+1)(98+1)(94+1)(92+1)(9+1)(9-1)>(932+1)(916+1)(98+1)(94+1)(92+1)(9+1)

=>964-1>(932+1)(916+1)(98+1)(94+1)(92+1)(9+1)

3 tháng 7 2015

tách ít ít ra thôi. để cả cộp thế này k ai làm cho đâu. mệt quá

23 tháng 7 2018

a) \(2011.2013+2012.2014\)

\(=\left(2012-1\right)\left(2012+1\right)+\left(2013-1\right)\left(2013+1\right)\)

\(=2012^2-1+2013^2-1\)

\(=2012^2+2013^2-2\)

\(\Rightarrow2011.2013+2012.2014=2012^2+2013^2-2\)

b) \(\left(9-1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)

\(=\dfrac{1}{10}\left(9+1\right)\left(9-1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)

\(=\dfrac{1}{10}\left(9^2-1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)

\(=\dfrac{1}{10}\left(9^4-1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)

\(=\dfrac{1}{10}\left(9^8-1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)

\(=\dfrac{1}{10}\left(9^{16}-1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)

\(=\dfrac{1}{10}\left(9^{32}-1\right)\left(9^{32}+1\right)\)

\(=\dfrac{1}{10}\left(9^{64}-1\right)\)

\(=\dfrac{9^{64}-1}{10}\)

Ta có: \(9^{64}-1=\dfrac{10\left(9^{64}-1\right)}{10}\)

\(\dfrac{10\left(9^{64}-1\right)}{10}>\dfrac{9^{64}-1}{10}\)

\(\Rightarrow\left(9-1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)< 9^{64}-1\)

c) Ta có:

\(\dfrac{x^2-y^2}{x^2+xy+y^2}=\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2-xy}\left(1\right)\)

Vì x>y>0, ta có:

\(\dfrac{x-y}{x+y}=\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}\left(2\right)\)

Vì x>y>0 nên \(\left(x+y\right)^2-xy< \left(x+y\right)^2\left(3\right)\)

Từ (1), (2) và (3) suy ra:

\(\dfrac{x-y}{x+y}< \dfrac{x^2-y^2}{x^2+xy+y^2}\)

18 tháng 9 2018

a) Ta có:

\(2011.2013+2012.2014\)

\(=\left(2012-1\right)\left(2012+1\right)+\left(2013-1\right)\left(2013+1\right)\)

\(=2012^2-1+2013^2-1\)

\(=2012^2+2013^2-2\)

Vậy 2011.2013+2012.2014 = 20122 + 20132 - 2

20 tháng 11 2016

chịu

12 tháng 7 2016

a) \(85^2+75^2+65^2+55^2-45^2-35^2-25^2-15^2\)

\(=\left(85^2-15^2\right)+\left(75^2-25^2\right)+\left(65^2-35^2\right)+\left(55^2-45^2\right)\)

\(=\left(85-15\right)\left(85+15\right)+\left(75-25\right)\left(75+25\right)+\left(65-35\right)\left(65+35\right)+\left(55-45\right)\left(55+45\right)\)

\(=70.100+50.100+30.100+10.100\)

\(=7000+5000+3000+1000\)

\(=16000\)

12 tháng 7 2016

b) \(\frac{135^2+130.135+65^2}{135^2-65^2}\)

\(=\frac{135^2+2.60.135+65^2}{135^2-65^2}\)

\(=\frac{\left(135+65\right)^2}{\left(135-65\right)^2}\)

\(=\frac{200^2}{70^2}\) \(=\frac{200}{70}=\frac{20}{7}\)