K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2016

a) \(85^2+75^2+65^2+55^2-45^2-35^2-25^2-15^2\)

\(=\left(85^2-15^2\right)+\left(75^2-25^2\right)+\left(65^2-35^2\right)+\left(55^2-45^2\right)\)

\(=\left(85-15\right)\left(85+15\right)+\left(75-25\right)\left(75+25\right)+\left(65-35\right)\left(65+35\right)+\left(55-45\right)\left(55+45\right)\)

\(=70.100+50.100+30.100+10.100\)

\(=7000+5000+3000+1000\)

\(=16000\)

12 tháng 7 2016

b) \(\frac{135^2+130.135+65^2}{135^2-65^2}\)

\(=\frac{135^2+2.60.135+65^2}{135^2-65^2}\)

\(=\frac{\left(135+65\right)^2}{\left(135-65\right)^2}\)

\(=\frac{200^2}{70^2}\) \(=\frac{200}{70}=\frac{20}{7}\)

20 tháng 11 2016

chịu

3 tháng 11 2018

a) \(A=85^2-45^2+75^2-35^2+65^2-25^2+55^2-15^2\)

\(A=\left(85-45\right)\left(85+45\right)+....+\left(55-15\right)\left(55+15\right)\)

\(A=40.130+40.110+40.90+40.70\)

\(A=40.\left(130+110+90+70\right)=40.400=16000\)

3 tháng 11 2018

b) \(B=\left(1-2\right)\left(1+2\right)+\left(3-4\right)\left(3+4\right)+...+\left(2011-2012\right)\left(2011+2012\right)\)

\(B=-3-7-11-...-4023\)

\(B=-\left(3+7+11+...+4023\right)\)

\(B=-\dfrac{\left(3+4023\right)\left[\dfrac{\left(4023-3\right)}{4}+1\right]}{2}=2025078\)

30 tháng 7 2019

\(B=10^2+8^2+...+2^2-\left(9^2+7^2+5^2+3^2+1^2\right)\)

\(B=\left(10^2-9^2\right)+\left(8^2-7^2\right)+...+\left(2^2-1^2\right)\)

\(B=\left(10+9\right)\left(10-9\right)+\left(8+7\right)\left(8-7\right)+...+\left(2-1\right)\left(2+1\right)\)

\(B=19+15+...+3\)

Đến đây dễ rồi. Câu a) đang suy nghĩ

31 tháng 7 2019

\(A=1+\left(5+1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)

\(4A=4+4\cdot\left(5+1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)

\(4A=4+\left(5-1\right)\left(5+1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)

\(4A=4+\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)

\(4A=4+\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)

\(4A=4+\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)

\(4A=4+\left(5^{16}-1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)

\(4A=4+\left(5^{32}-1\right)\left(5^{32}+1\right)\)

\(4A=4+5^{64}-1\)

\(4A=5^{64}+3\)

\(A=\frac{5^{64}+3}{4}\)

20 tháng 6 2021

Ta có A = 2018.2020 + 2019.2021

= (2020 - 2).2020 + 2019.(2019 + 2) 

= 20202 - 2.2020 + 20192 + 2.2019

= 20202 + 20192 - 2(2020 - 2019) = 20202 + 20192 - 2 = B

=> A = B

b) Ta có B = 964 - 1= (932)2 - 12 

= (932 + 1)(932 - 1) = (932 + 1)(916 + 1)(916 - 1) = (932 + 1)(916 + 1)(98 + 1)(98 - 1) 

= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(94 - 1) 

= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1)(92 - 1) 

  (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).80 

mà A =   (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).10

=> A < B

20 tháng 6 2021

c) Ta có A = \(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}=\frac{x^2-y^2}{x^2+2xy+y^2}< \frac{x^2-y^2}{x^2+xy+y^2}=B\)

=> A < B

d) \(A=\frac{\left(x+y\right)^3}{x^2-y^2}=\frac{\left(x+y\right)^3}{\left(x+y\right)\left(x-y\right)}=\frac{\left(x+y\right)^2}{x-y}=\frac{x^2+2xy+y^2}{x-y}< \frac{x^2-xy+y^2}{x-y}=B\)

=> A < B

AH
Akai Haruma
Giáo viên
22 tháng 9 2020

a)

$A=(1^2-2^2)+(3^2-4^2)+....+(2003^2-2004^2)+2005^2$

$=(1-2)(1+2)+(3-4)(3+4)+....+(2003-2004)(2003+2004)+2005^2$

$=-(1+2)-(3+4)-...-(2003+2004)+2005^2$

$=-(1+2+3+...+2004)+2005^2=-\frac{2004.2005}{2}+2005^2$

$=2005^2-1002.2005=2005(2005-1002)=2011015$

b)

$B=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)-2^{64}$

$=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)-2^{64}$

$=(2^4-1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)-2^{64}$

$=(2^8-1)(2^8+1)(2^{16}+1)(2^{32}+1)-2^{64}$

$=(2^{16}-1)(2^{16}+1)(2^{32}+1)-2^{64}$

$=(2^{32}-1)(2^{32}+1)-2^{64}$

$=2^{64}-1-2^{64}=-1$

AH
Akai Haruma
Giáo viên
22 tháng 9 2020

c) Do $x=16$ nên $x-16=0$

$R(x)=x^4-17x^3+17x^2-17x+20$

$=(x^4-16x^3)-(x^3-16x^2)+x^2-16x-x+20$

$=x^3(x-16)-x^2(x-16)+x(x-16)-x+20$

$=x^3.0-x^2.0+x.0-x+20=-x+20=-16+20=4$

d) Do $x=12$ nên $x-12=0$. Khi đó:

$S(x)=(x^{10}-12x^9)-(x^9-12x^8)+(x^8-12x^7)-....+(x^2-12x)-x+10$

$=x^9(x-12)-x^8(x-12)+x^7(x-12)-....+x(x-12)-x+10$

$=(x-12)(x^9-x^8+x^7-....+x)-x+10$

$=0-x+10=-x+10=-12+10=-2$