Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{10}=1024< 1029=3.7^3\)
\(\Leftrightarrow\left(2^{10}\right)^{238}< \left(3.7^3\right)^{238}\)
\(\Leftrightarrow2^{2380}< 3^{238}.7^{714}\) \(\left(1\right)\)
\(3^5=243< 256=2^8\) \(\left(2\right)\)
\(3^3=27< 32=2^5\) \(\left(3\right)\)
Từ \(\left(2\right)\), \(\left(3\right)\) ta có:
\(3^{328}=3^3.3^{325}=3^3\left(3^5\right)^{47}< 2^5\left(2^8\right)^{47}=2^{381}\)\(\left(4\right)\)
Từ \(\left(1\right)\), \(\left(4\right)\) ta có:
\(2^{2380}< 3^{238}.7^{714}\)
\(\Leftrightarrow2^{2380}< 2^{381}.7^{714}\)
\(\Leftrightarrow2^{1999}< 7^{714}\)
\(\Leftrightarrow2^{1993}< 7^{714}\).
b)10750 < 10850 = (4.27)50 = 2100. 3150 (1)
7375 > 7275 =(8.9)75 = 2225.3150 (2)
Nhưng 2100 .3150 < 2225. 3150 (3)
Từ (1), (2) và (3) suy ra: 10750 < 7375
a: 43/52>26/52=1/2=60/120
b: 17/68=1/4<1/3=35/105<35/103
c: \(\dfrac{2018\cdot2019-1}{2018\cdot2019}=1-\dfrac{1}{2018\cdot2019}\)
\(\dfrac{2019\cdot2020-1}{2019\cdot2020}=1-\dfrac{1}{2019\cdot2020}\)
2018*2019<2019*2020
=>-1/2018*2019<-1/2019*2020
=>\(\dfrac{2018\cdot2019-1}{2018\cdot2019}< \dfrac{2019\cdot2020-1}{2019\cdot2020}\)
7^14 và 50^7
7^14 = (7^2)^7 =49^7
mà 49^7>50^7
suy ra 7^14>50^7