Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,312 và 58
Ta có:312=(33)4=274
58=(52)4=254
Vì 274>254 nên 312>58
b,(0,6)9 và (0,9)6
Ta có:(0,9)6>(0,6)6 mà (0,6)6>(0,6)9
\(\Rightarrow\)(0,6)9<(0,9)6
c,52000 và 101000
Ta có:52000=(52)1000=251000>101000
\(\Rightarrow\)52000>101000
d,?????
a, \(4^{100}=\left(2^2\right)^{100}=2^{200}< 2^{202}\)
\(\Rightarrow\text{ }4^{100}< 2^{202}\)
b, \(3^0=1< 5^8\)
\(3^0< 5^8\)
c, \(\left(0,6\right)^0=1\)
\(\left(-0,9\right)^6=\left(0,9\right)^6\)
\(\Rightarrow\text{ }\left(0,6\right)^0< \left(-0,9\right)^6\)
d,
e, \(8^{12}=\left(2^3\right)^{12}=2^{36}=2^{16}\cdot2^{20}=2^{16}\cdot\left(2^4\right)^5=2^{16}\cdot16^5\)
\(12^8=\left(2^2\cdot3\right)^8=2^{16}\cdot3^8=2^{16}\cdot\left(3^2\right)^4=2^{16}\cdot9^4\)
Vì \(2^{16}\cdot16^5>2^{16}\cdot9^4\text{ }\Rightarrow\text{ }8^{12}>12^8\)
a, 12^1200 > 2^100 Vì cả cơ số lẫn số mũ đều lớn hơn
b, 9^99= (9^11)^9
Vì 9^11> 99 nêm 99^11^9> 99^9
Vậy 9^99> 99^9
Ta có : \(\frac{2^9}{3^{2010}}:\frac{3^9}{2^{2010}}=\frac{2^{2019}}{3^{2019}}=\left(\frac{2}{3}\right)^{2019}< 1^{2019}=1\)
Vì \(\frac{2^9}{3^{2010}}:\frac{3^9}{2^{2010}}< 1\)
=> \(\frac{2^9}{3^{2010}}< \frac{3^9}{2^{2010}}\)
Bài làm :
Cách 1:
Ta có :
\(\frac{2^9}{3^{2010}}\div\frac{3^9}{2^{2010}}=\frac{2^9.2^{2010}}{3^{2010}.3^9}=\frac{2^{2019}}{3^{2019}}=\left(\frac{2}{3}\right)^{2019}< 1\)
\(\Rightarrow\frac{2^9}{3^{2010}}< \frac{3^9}{2^{2010}}\)
Cách 2 :
Nhận thấy :
- 29 < 39
- 32010 > 22010
\(\Rightarrow\frac{2^9}{3^{2010}}< \frac{3^9}{2^{2010}}\)
a.ta có: \(3^{2009}\)
\(9^{1005}\)= \(\left(3^2\right)^{1005}\) =\(3^{2010}\)
*Vì 2010> 2009 =>\(3^{2009}\) < \(3^{2010}\)
Vậy \(3^{2009}\) < \(9^{1005}\).
\(6^9\)và \(3^{18}\)
Ta có \(3^{18}=\left(3^2\right)^9=9^9\)
Vì \(6^9< 9^9\)nên \(6^9< 3^{18}\)
\(5^9=\left(5^3\right)^3=125^3>81^3=\left(3^4\right)^3=3^{12}\)
Vậy \(5^9>3^{12}\)
Ta có :
`5^9 = 5^(3.3) = (5^3)^3 = 125^3`
`3^12 = 3^(4.3) = (3^4)^3=81^3`
Vì `125^3 > 81^3 => 5^9>3^12`