K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2015

\(\frac{-4}{3}=\frac{-28}{21};\frac{9}{-7}=\frac{-27}{21}\Rightarrow\frac{-4}{3}

18 tháng 8 2017

\(-3\sqrt{7}va-9\)

bình phương ta có

\(-\left(3\sqrt{7}\right)^2=-63\)                     \(-\left(9\right)^2=-81\)

mà -63>-81   suy ra \(-3\sqrt{7}< -9\)

28 tháng 8 2016

Chỉ cần bình phương mỗi vế của 1 đẳng thức là xong

28 tháng 8 2016

Bài 1 :

Ta có :

\(2\sqrt{5}-5-\left(\sqrt{5}-3\right)=\sqrt{5}-8=\sqrt{5}-\sqrt{64}< 0\)

\(\Rightarrow2\sqrt{5}-5< \sqrt{5}-3\)

Vậy ...

Bài 2 :

Ta có :

\(\sqrt{17}>\sqrt{16}\)

\(\sqrt{26}>\sqrt{25}\)

\(\Rightarrow\sqrt{17}+\sqrt{26}>\sqrt{16}+\sqrt{25}=4+5=9\)

Vậy ...

Bài 3 :

\(13\sqrt{35}=\sqrt{169}.\sqrt{35}>\sqrt{48}.\sqrt{1}=48\)

Vậy ...

22 tháng 10 2019

3+2V2 lớn hơn

12 tháng 9 2016

a ) \(2\sqrt{5}-5\) và \(\sqrt{5}-3\)

Ta có ; \(2\sqrt{5}-5-\left(\sqrt{5}-3\right)\)

         \(=\sqrt{5}-8\)

         \(=\sqrt{5}-\sqrt{64}< 0\)

\(\Rightarrow2\sqrt{5}-5< \sqrt{5}-3\)

Vậy .................

b ) \(\sqrt{17}+\sqrt{26}\) và 9 

Ta có : 

\(\sqrt{17}>\sqrt{16}\)

\(\sqrt{26}>\sqrt{25}\)

\(\Rightarrow\sqrt{17}+\sqrt{26}>\sqrt{16}+\sqrt{25}=4+5=9\)

Vậy ...

15 tháng 8 2017

So sánh: \(\sqrt{11}-\sqrt{3}\&2\)

\(\sqrt{11}=3,3166...\)

\(\sqrt{3}=1,7320...\)

\(\Rightarrow\sqrt{11}-\sqrt{3}=3,3166-1,7320=1,5846\)

\(1,5846< 2\Rightarrow\sqrt{11}-\sqrt{3}< 2\)

15 tháng 8 2017

Dễ mà!Dùng máy tính bỏ túi mà tính

28 tháng 10 2018

a) \(2-2\sqrt{3}\)\(4-\sqrt{15}\)

Giả sử : \(2-2\sqrt{3}\ge4-\sqrt{15}\)

\(\sqrt{15}-2\sqrt{3}\ge2\)

\(\left(\sqrt{15}-2\sqrt{3}\right)^2\ge2^2\)

⇔ 15 - \(12\sqrt{5}+12\) ≥ 4

⇔ 27 -4 ≥ \(12\sqrt{5}\)

⇔ 23 ≥ \(12\sqrt{5}\)

\(23^2\)\(\left(12\sqrt{5}\right)^2\)

⇔ 529 ≥ 720 (sai)

Vậy 2 - \(2\sqrt{3}< 4-\sqrt{15}\)

b) \(\sqrt{11}+2\)\(3+\sqrt{3}\)

Giả sử : \(\sqrt{11}+2\le3+\sqrt{3}\)

\(\sqrt{11}-\sqrt{3}\le1\)

\(\left(\sqrt{11}-\sqrt{3}\right)^2\le1\)

⇔ 14 - \(2\sqrt{33}\) ≤ 1

⇔ 13 ≤ \(2\sqrt{33}\)

\(13^2\le\left(2\sqrt{33}\right)^2\)

⇔ 169 ≤ 132 (sai)

Vậy \(\sqrt{11}+2\ge3+\sqrt{3}\)

28 tháng 10 2018

Nguyễn Thanh Hằng, Dương Nguyễn, Ngô Thành Chung, Khôi Bùi , Trần Nguyễn Bảo Quyên, Tạ Thị Diễm Quỳnh, Nguyễn Quang Minh, Khánh Như Trương Ngọc, Nguyễn Quang Minh, Mysterious Person, Phùng Khánh Linh, JakiNatsumi, DƯƠNG PHAN KHÁNH DƯƠNG, Hoàng Phong, Ribi Nkok Ngok, ...

7 tháng 10 2018

Khôi Bùi , DƯƠNG PHAN KHÁNH DƯƠNG, Mysterious Person, Phạm Hoàng Giang, Phùng Khánh Linh, Dũng Nguyễn, TRẦN MINH HOÀNG, JakiNatsumi, Hoàng Phong, ...

7 tháng 10 2018

Giup minh voi !!! Khôi Bùi​,DƯƠNG PHAN KHÁNH DƯƠNG, Phùng Khánh Linh, Nhã Doanh, hattori heiji, Phạm Hoàng Giang, Dũng Nguyễn, ...

1: \(\left(\sqrt{3}+\sqrt{7}\right)^2=10+2\sqrt{21}\)

\(\left(2+\sqrt{6}\right)^2=10+4\sqrt{6}\)

mà 2 căn 21<4 căn 6

nên căn 3+căn 7<2+căn 6

2: \(\sqrt{7}-\sqrt{5}=\dfrac{2}{\sqrt{7}+\sqrt{5}}\)

\(\sqrt{6}-2=\dfrac{2}{\sqrt{6}+2}\)

mà \(\sqrt{7}+\sqrt{5}>\sqrt{6}+2\)

nên \(\sqrt{7}-\sqrt{5}< \sqrt{6}-2\)

3: \(\sqrt{11}-\sqrt{7}=\dfrac{4}{\sqrt{11}+\sqrt{7}}\)

\(\sqrt{7}-\sqrt{3}=\dfrac{4}{\sqrt{7}+\sqrt{3}}\)

mà căn 11>căn 3

nên \(\sqrt{11}-\sqrt{7}< \sqrt{7}-\sqrt{3}\)

1 tháng 12 2017

Ta có : \(\left(\sqrt{5}+\sqrt{7}\right)^2=5+7+2\sqrt{35}\)

=\(12+2\sqrt{35}\le12+2\sqrt{36}=12+2.6=24\)

\(\left(2\sqrt{6}\right)^2=24\)

Do đó \(\left(\sqrt{5}+\sqrt{7}\right)^2< \left(2\sqrt{6}\right)^2\)

\(\sqrt{5}+\sqrt{7}>0\)\(2\sqrt{6}>0\)

Vậy \(\sqrt{5}+\sqrt{7}< 2\sqrt{6}\)