Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-3\sqrt{7}va-9\)
bình phương ta có
\(-\left(3\sqrt{7}\right)^2=-63\) \(-\left(9\right)^2=-81\)
mà -63>-81 suy ra \(-3\sqrt{7}< -9\)
Bài 1 :
Ta có :
\(2\sqrt{5}-5-\left(\sqrt{5}-3\right)=\sqrt{5}-8=\sqrt{5}-\sqrt{64}< 0\)
\(\Rightarrow2\sqrt{5}-5< \sqrt{5}-3\)
Vậy ...
Bài 2 :
Ta có :
\(\sqrt{17}>\sqrt{16}\)
\(\sqrt{26}>\sqrt{25}\)
\(\Rightarrow\sqrt{17}+\sqrt{26}>\sqrt{16}+\sqrt{25}=4+5=9\)
Vậy ...
Bài 3 :
\(13\sqrt{35}=\sqrt{169}.\sqrt{35}>\sqrt{48}.\sqrt{1}=48\)
Vậy ...
a ) \(2\sqrt{5}-5\) và \(\sqrt{5}-3\)
Ta có ; \(2\sqrt{5}-5-\left(\sqrt{5}-3\right)\)
\(=\sqrt{5}-8\)
\(=\sqrt{5}-\sqrt{64}< 0\)
\(\Rightarrow2\sqrt{5}-5< \sqrt{5}-3\)
Vậy .................
b ) \(\sqrt{17}+\sqrt{26}\) và 9
Ta có :
\(\sqrt{17}>\sqrt{16}\)
\(\sqrt{26}>\sqrt{25}\)
\(\Rightarrow\sqrt{17}+\sqrt{26}>\sqrt{16}+\sqrt{25}=4+5=9\)
Vậy ...
a) \(2-2\sqrt{3}\) và \(4-\sqrt{15}\)
Giả sử : \(2-2\sqrt{3}\ge4-\sqrt{15}\)
⇔ \(\sqrt{15}-2\sqrt{3}\ge2\)
⇔ \(\left(\sqrt{15}-2\sqrt{3}\right)^2\ge2^2\)
⇔ 15 - \(12\sqrt{5}+12\) ≥ 4
⇔ 27 -4 ≥ \(12\sqrt{5}\)
⇔ 23 ≥ \(12\sqrt{5}\)
⇔ \(23^2\) ≥ \(\left(12\sqrt{5}\right)^2\)
⇔ 529 ≥ 720 (sai)
Vậy 2 - \(2\sqrt{3}< 4-\sqrt{15}\)
b) \(\sqrt{11}+2\) và \(3+\sqrt{3}\)
Giả sử : \(\sqrt{11}+2\le3+\sqrt{3}\)
⇔ \(\sqrt{11}-\sqrt{3}\le1\)
⇔ \(\left(\sqrt{11}-\sqrt{3}\right)^2\le1\)
⇔ 14 - \(2\sqrt{33}\) ≤ 1
⇔ 13 ≤ \(2\sqrt{33}\)
⇔ \(13^2\le\left(2\sqrt{33}\right)^2\)
⇔ 169 ≤ 132 (sai)
Vậy \(\sqrt{11}+2\ge3+\sqrt{3}\)
Nguyễn Thanh Hằng, Dương Nguyễn, Ngô Thành Chung, Khôi Bùi , Trần Nguyễn Bảo Quyên, Tạ Thị Diễm Quỳnh, Nguyễn Quang Minh, Khánh Như Trương Ngọc, Nguyễn Quang Minh, Mysterious Person, Phùng Khánh Linh, JakiNatsumi, DƯƠNG PHAN KHÁNH DƯƠNG, Hoàng Phong, Ribi Nkok Ngok, ...
Khôi Bùi , DƯƠNG PHAN KHÁNH DƯƠNG, Mysterious Person, Phạm Hoàng Giang, Phùng Khánh Linh, Dũng Nguyễn, TRẦN MINH HOÀNG, JakiNatsumi, Hoàng Phong, ...
Giup minh voi !!! Khôi Bùi,DƯƠNG PHAN KHÁNH DƯƠNG, Phùng Khánh Linh, Nhã Doanh, hattori heiji, Phạm Hoàng Giang, Dũng Nguyễn, ...
1: \(\left(\sqrt{3}+\sqrt{7}\right)^2=10+2\sqrt{21}\)
\(\left(2+\sqrt{6}\right)^2=10+4\sqrt{6}\)
mà 2 căn 21<4 căn 6
nên căn 3+căn 7<2+căn 6
2: \(\sqrt{7}-\sqrt{5}=\dfrac{2}{\sqrt{7}+\sqrt{5}}\)
\(\sqrt{6}-2=\dfrac{2}{\sqrt{6}+2}\)
mà \(\sqrt{7}+\sqrt{5}>\sqrt{6}+2\)
nên \(\sqrt{7}-\sqrt{5}< \sqrt{6}-2\)
3: \(\sqrt{11}-\sqrt{7}=\dfrac{4}{\sqrt{11}+\sqrt{7}}\)
\(\sqrt{7}-\sqrt{3}=\dfrac{4}{\sqrt{7}+\sqrt{3}}\)
mà căn 11>căn 3
nên \(\sqrt{11}-\sqrt{7}< \sqrt{7}-\sqrt{3}\)
Ta có : \(\left(\sqrt{5}+\sqrt{7}\right)^2=5+7+2\sqrt{35}\)
=\(12+2\sqrt{35}\le12+2\sqrt{36}=12+2.6=24\)
Mà \(\left(2\sqrt{6}\right)^2=24\)
Do đó \(\left(\sqrt{5}+\sqrt{7}\right)^2< \left(2\sqrt{6}\right)^2\)
Mà \(\sqrt{5}+\sqrt{7}>0\) và \(2\sqrt{6}>0\)
Vậy \(\sqrt{5}+\sqrt{7}< 2\sqrt{6}\)
\(\frac{-4}{3}=\frac{-28}{21};\frac{9}{-7}=\frac{-27}{21}\Rightarrow\frac{-4}{3}