K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2016

Mít cứ bình phương lên là ok

(2\(\sqrt{7}\))2 =28 (1)

(3\(\sqrt{3}\))2 =27 (2)

vậy (1) > (2)

cứ thế mà làm là hết mít

14 tháng 10 2021

\(a,\left(\sqrt{2}+\sqrt{11}\right)^2=12+2\sqrt{22}\\ \left(\sqrt{3}+5\right)^2=28+10\sqrt{3}\)

Ta thấy \(12< 28;2\sqrt{22}=\sqrt{88}< \sqrt{300}=10\sqrt{3}\)

Nên \(\sqrt{2}+\sqrt{11}< \sqrt{3}+5\)

\(b,\left(\sqrt{21}-\sqrt{5}\right)^2=26-2\sqrt{105}\\ \left(\sqrt{20}-\sqrt{6}\right)^2=26-2\sqrt{120}\)

Vì \(\sqrt{105}< \sqrt{120}\Rightarrow-2\sqrt{105}>-2\sqrt{120}\)

Nên \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)

23 tháng 8 2016

a,x>y

b,x<y

c,ko biết

a: \(\left(\sqrt{7}+\sqrt{15}\right)^2=22+2\sqrt{105}=7+15+2\sqrt{105}\)

\(7^2=49=7+42\)

mà \(15+2\sqrt{105}< 42\)

nên \(\sqrt{7}+\sqrt{15}< 7\)

b: \(\left(\sqrt{2}+\sqrt{11}\right)^2=13+2\sqrt{22}\)

\(\left(5+\sqrt{3}\right)^2=28+10\sqrt{3}=13+15+10\sqrt{3}\)

mà \(2\sqrt{22}< 15+10\sqrt{3}\)

nên \(\sqrt{2}+\sqrt{11}< 5+\sqrt{3}\)

18 tháng 3 2017

ta có: N=6-\(\sqrt{11}\)

=\(\sqrt{36}\)-\(\sqrt{11}\)

ta có \(\sqrt{31}\)<\(\sqrt{36}\);\(\sqrt{13}\)>\(\sqrt{11}\)

\(\Rightarrow\)\(\sqrt{31}\)-\(\sqrt{13}\)<\(\sqrt{36}\)-\(\sqrt{11}\)

\(\Leftrightarrow\)\(\sqrt{31}\)-\(\sqrt{13}\)<6-\(\sqrt{11}\)

18 tháng 3 2017

thanks pn nhìu na 

12 tháng 12 2016

a] x lớn hơn y

b] x nhỏ hơn y

c] y lớn hơn x

12 tháng 12 2016

giải thích giùm mình với

bn giải thích đi rồi mik tích đúng cho

17 tháng 11 2016

Ta so sánh: \(\sqrt{3}-\sqrt{2}\)\(\sqrt{7}-\sqrt{6}\)

\(\sqrt{3}-\sqrt{2}=\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}=\frac{3-2}{\sqrt{3}+\sqrt{2}}=\frac{1}{\sqrt{3}+\sqrt{2}}\)

\(\sqrt{7}-\sqrt{6}=\frac{\left(\sqrt{7}-\sqrt{6}\right)\left(\sqrt{7}+\sqrt{6}\right)}{\sqrt{7}+\sqrt{6}}=\frac{7-6}{\sqrt{7}+\sqrt{6}}=\frac{1}{\sqrt{7}+\sqrt{6}}\)

\(\sqrt{3}+\sqrt{2}< \sqrt{7}+\sqrt{6}\)

nên \(\frac{1}{\sqrt{3}+\sqrt{2}}>\frac{1}{\sqrt{7}+\sqrt{6}}\)

\(\Rightarrow\sqrt{3}-\sqrt{2}>\sqrt{7}-\sqrt{6}\)

\(\Rightarrow\sqrt{3}+\sqrt{6}>\sqrt{7}+\sqrt{2}\) hay x > y

a: \(x=2\sqrt{7}=\sqrt{28}>\sqrt{27}=y\)

b: \(x=6\sqrt{2}=\sqrt{72}< \sqrt{75}=y\)