Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x=2\sqrt{7}=\sqrt{28}>\sqrt{27}=y\)
b: \(x=6\sqrt{2}=\sqrt{72}< \sqrt{75}=y\)
Mình tính giá trị biểu thức của x như sau:
\(\sqrt{31}-\sqrt{13}\)
\(=5.57-3.61\)
\(=1.96\)
Mình tính giá trị biểu thức của y như sau:
\(6-\sqrt{11}\)
\(=6-3.32\)
\(=2.68\)
Vậy: x < y
Ta so sánh: \(\sqrt{3}-\sqrt{2}\) và \(\sqrt{7}-\sqrt{6}\)
\(\sqrt{3}-\sqrt{2}=\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}=\frac{3-2}{\sqrt{3}+\sqrt{2}}=\frac{1}{\sqrt{3}+\sqrt{2}}\)
\(\sqrt{7}-\sqrt{6}=\frac{\left(\sqrt{7}-\sqrt{6}\right)\left(\sqrt{7}+\sqrt{6}\right)}{\sqrt{7}+\sqrt{6}}=\frac{7-6}{\sqrt{7}+\sqrt{6}}=\frac{1}{\sqrt{7}+\sqrt{6}}\)
Vì \(\sqrt{3}+\sqrt{2}< \sqrt{7}+\sqrt{6}\)
nên \(\frac{1}{\sqrt{3}+\sqrt{2}}>\frac{1}{\sqrt{7}+\sqrt{6}}\)
\(\Rightarrow\sqrt{3}-\sqrt{2}>\sqrt{7}-\sqrt{6}\)
\(\Rightarrow\sqrt{3}+\sqrt{6}>\sqrt{7}+\sqrt{2}\) hay x > y
x =
\(\sqrt{3}\)= 1,732050808
\(\sqrt{6}\)= 2,449489743
1,732050808+2,449489743 = 4,181540551
y =
\(\sqrt{2}\)= 1,414213562
\(\sqrt{7}\)= 2,645751311
1,414213562+2,645751311 = 4,059964873
Vì 4,181540551 > 4,059964873 nên x > y
k mình nha
Chúc bạn học giỏi
Mình cảm ơn bạn nhiều
a] x lớn hơn y
b] x nhỏ hơn y
c] y lớn hơn x
giải thích giùm mình với
bn giải thích đi rồi mik tích đúng cho