K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2017

\(S=\frac{1}{x^2+5x+4}+\frac{1}{x^2+11x+28}+\frac{1}{x^2+17x+70}+\frac{1}{x^2+23x+130}+\frac{1}{x^2+29x+208}\)

\(=\frac{1}{x^2+4x+x+4}+\frac{1}{x^2+7x+4x+28}+...+\frac{1}{x^2+16x+13x+208}\)

\(=\frac{1}{x\left(x+4\right)+\left(x+4\right)}+\frac{1}{x\left(x+7\right)+4\left(x+7\right)}+...+\frac{1}{x\left(x+16\right)+13\left(x+16\right)}\)

\(=\frac{1}{\left(x+1\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+7\right)}+...+\frac{1}{\left(x+13\right)\left(x+16\right)}\)

\(=\frac{1}{3}\left[\frac{3}{\left(x+1\right)\left(x+4\right)}+\frac{3}{\left(x+4\right)\left(x+7\right)}+...+\frac{3}{\left(x+13\right)\left(x+16\right)}\right]\)

\(=\frac{1}{3}\left[\frac{1}{x+1}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+7}+...+\frac{1}{x+13}-\frac{1}{x+16}\right]\)

\(=\frac{1}{3}\left[\frac{1}{x+1}-\frac{1}{x+16}\right]\)\(=\frac{1}{3}\left[\frac{x+16}{\left(x+1\right)\left(x+16\right)}-\frac{x+1}{\left(x+1\right)\left(x+16\right)}\right]\)

\(=\frac{1}{3}\cdot\frac{15}{x^2+17x+16}=\frac{5}{x^2+7x+16}\)

Bài 1: 

\(=\dfrac{1}{\left(x+1\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+7\right)}+\dfrac{1}{\left(x+7\right)\left(x+10\right)}+\dfrac{1}{\left(x+10\right)\left(x+13\right)}+\dfrac{1}{\left(x+13\right)\left(x+16\right)}\)

\(=\dfrac{1}{3}\left(\dfrac{3}{\left(x+1\right)\left(x+4\right)}+\dfrac{3}{\left(x+4\right)\left(x+7\right)}+\dfrac{3}{\left(x+7\right)\left(x+10\right)}+\dfrac{3}{\left(x+10\right)\left(x+13\right)}+\dfrac{3}{\left(x+13\right)\cdot\left(x+16\right)}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{x+1}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+7}+\dfrac{1}{x+7}-\dfrac{1}{x+10}+\dfrac{1}{x+10}-\dfrac{1}{x+13}+\dfrac{1}{x+13}-\dfrac{1}{x+16}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{x+1}-\dfrac{1}{x+16}\right)\)

\(=\dfrac{1}{3}\cdot\dfrac{x+16-x-1}{\left(x+1\right)\left(x+16\right)}=\dfrac{5}{\left(x+1\right)\left(x+16\right)}\)

Bài 2: 

\(\Leftrightarrow a^2-2a+1+b^2+4b+4+4c^2-4c+1=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b+4\right)^2+\left(2c-1\right)^2=0\)

Dấu '=' xảy ra khi a=1; b=-4; c=1/2

23 tháng 2 2017

bài 1+2: phân tích mẫu thành nhân tử r` áp dụng 

1/ab=1/a-1/b 

bài 3+4: quy đồng rút gọn blah...

13 tháng 12 2018

a) ĐK: \(x\ne0;x\ne-1\)

\(\left(\frac{1}{x^2+x}-\frac{2-x}{x+1}\right):\left(\frac{1}{2}+x-2\right)\)

\(=\left(\frac{x+1-2+x}{\left(x^2+x\right)\left(x+1\right)}\right):\left(\frac{1+2x+4}{2}\right)\)

\(=\frac{2x-1}{\left(x^2+x\right)\left(x+1\right)}:\frac{2x+5}{2}\)\(=\frac{2\left(2x-1\right)}{\left(x^2+x\right)\left(x+1\right)\left(2x+5\right)}\)?? hình như hết tính tiếp được rồi :v

P/s: Có phải đề là tính giá trị biểu thức không?

12 tháng 12 2018

\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x\left(x+4\right)+5\left(x+4\right)}+\frac{1}{x\left(x+5\right)+6\left(x+5\right)}+\frac{1}{x\left(x+6\right)+7\left(x+6\right)}=\frac{1}{18}\)(điều kiện: \(x\ne\left\{-4;-5;-6;-7\right\}\) )

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Rightarrow54=\left(x+4\right)\left(x+7\right)\)

\(\Leftrightarrow x^2+11x-26=0\)

\(\Leftrightarrow x\left(x+13\right)-2\left(x+13\right)=0\Leftrightarrow\left(x+13\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=-13\\x=2\end{cases}}\)(thỏa mãn ĐKXĐ)

Vậy tập nghiệm của pt là: \(S=\left\{-13;2\right\}\)

12 tháng 12 2018

Lâu lắm không làm nhể

\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{x^2+4x+5x+20}+\frac{1}{x^2+5x+6x+30}+\frac{1}{x^2+6x+7x+42}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{x.\left(x+4\right)+5.\left(x+4\right)}+\frac{1}{x.\left(x+5\right)+6.\left(x+5\right)}+\frac{1}{x.\left(x+6\right)+7.\left(x+6\right)}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{\left(x+4\right).\left(x+5\right)}+\frac{1}{\left(x+5\right).\left(x+6\right)}+\frac{1}{\left(x+6\right).\left(x+7\right)}=\frac{1}{18}\)

Dùng công thứ \(\frac{1}{x.\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)

Khi đó \(\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Rightarrow\frac{x+7}{\left(x+4\right).\left(x+7\right)}-\frac{\left(x+4\right)}{\left(x+4\right).\left(x+7\right)}=\frac{1}{18}\)

\(\Rightarrow\frac{3}{\left(x+4\right).\left(x+7\right)}=\frac{1}{18}\Rightarrow\left(x+4\right).\left(x+7\right)=54\)

\(\Rightarrow\hept{\begin{cases}x+4=6\\x+7=9\end{cases}}\)hoặc \(\hept{\begin{cases}x+4=-6\\x+7=-9\end{cases}}\)

Suy ra \(x=3\)hoặc \(x=-3\)

6 tháng 11 2016

mk ko biết làm 

xin lỗi bn nhae

xin lỗi vì đã ko giúp được bn

chcus bn học gioi!

nhae@@@

6 tháng 11 2016

mình không biết làm

tk nhé@@@@@@@@@@@@@@@@@@@@

LOL

hihi

13 tháng 2 2020

Mình thử nha :33

ĐKXĐ : \(x\ne-3,x\ne-26,x\ne-6,x\ne1\)

Ta có :

\(A=\left[\frac{3}{2}-\left(\frac{x^4\left(x^2+1\right)-x^4-1}{x^2+1}\right)\cdot\frac{x^3-4x^2+\left(x-4\right)}{x^6\left(x+6\right)-\left(x+6\right)}\right]:\frac{\left(x+3\right)\left(x+26\right)}{3\left(x-2\right)\left(x+6\right)}\)

\(=\left[\frac{3}{2}-\left(\frac{x^6-1}{x^2+1}\right)\cdot\frac{\left(x-4\right)\left(x^2+1\right)}{\left(x+6\right)\left(x^6-1\right)}\right]\cdot\frac{3\left(x-2\right)\left(x+6\right)}{\left(x+3\right)\left(x+26\right)}\)

\(=\left[\frac{3}{2}-\frac{x-4}{x+6}\right]\cdot\frac{3\left(x-2\right)\left(x+6\right)}{\left(x+3\right)\left(x+26\right)}\)

\(=\frac{x+26}{2\left(x+6\right)}\cdot\frac{3\left(x-2\right)\left(x+6\right)}{\left(x+3\right)\left(x+26\right)}\)

\(=\frac{3\left(x-2\right)}{2\left(x+3\right)}\)

Vậy : \(A=\frac{3\left(x-2\right)}{2\left(x+3\right)}\left(x\ne-3,x\ne-26,x\ne-6,x\ne1\right)\)

15 tháng 3 2020

i) (x - 1)(5x + 3) = (3x - 8)(x - 1)

<=> 5x2 + 3x - 5x - 3 = 3x2 - 3x - 8x + 8

<=> 5x2 - 2x - 3 = 3x2 - 11x + 8

<=> 5x2 - 2x - 3 - 3x2 + 11x - 8 = 0

<=> 2x2 + 9x - 11 = 0

<=> 2x2 + 11x - 2x - 11 = 0

<=> x(2x + 11) - (2x + 11) = 0

<=> (x - 1)(2x + 11) = 0

<=> x - 1 = 0 hoặc 2x + 11 = 0

<=> x = 0 hoặc x = -11/2

m) 2x(x - 1) = x2 - 1

<=> 2x2 - 2x = x2 - 1

<=> 2x2 - 2x - x2 + 1 = 0

<=> x2 - 2x + 1 = 0

<=> (x - 1)2 = 0

<=> x - 1 = 0

<=> x = 1

n) (2 - 3x)(x + 11) = (3x - 2)(2 - 5x)

<=> 2x + 22 - 3x2 - 33x = 6x - 15x2 - 4 + 10x

<=> -31x + 22 - 3x2 = 16x - 15x2 - 4

<=> 31x - 22 + 3x2 + 16x - 15x2 - 4 = 0

<=> 47x - 18 - 12x2 = 0

<=> -12x2 + 47x - 26 = 0

<=> 12x2 - 47x + 26 = 0

<=> 12x2 - 8x - 39x + 26 = 0

<=> 4x(3x - 2) - 13(3x - 2) = 0

<=> (4x - 13)(3x - 2) = 0

<=> 4x - 13 = 0 hoặc 3x - 2 = 0

<=> x = 13/4 hoặc x = 2/3

15 tháng 3 2020

i) (x - 1)(5x + 3) = (3x - 8)(x - 1)

<=> 5x2 + 3x - 5x - 3 = 3x2 - 3x - 8x + 8

<=> 5x2 - 2x - 3 = 3x2 - 11x + 8

<=> 5x2 - 2x - 3 - 3x2 + 11x - 8 = 0

<=> 2x2 + 9x - 11 = 0

<=> 2x2 + 11x - 2x - 11 = 0

<=> x(2x + 11) - (2x + 11) = 0

<=> (x - 1)(2x + 11) = 0

<=> x - 1 = 0 hoặc 2x + 11 = 0

<=> x = 0 hoặc x = -11/2

m) 2x(x - 1) = x2 - 1

<=> 2x2 - 2x = x2 - 1

<=> 2x2 - 2x - x2 + 1 = 0

<=> x2 - 2x + 1 = 0

<=> (x - 1)2 = 0

<=> x - 1 = 0

<=> x = 1

n) (2 - 3x)(x + 11) = (3x - 2)(2 - 5x)

<=> 2x + 22 - 3x2 - 33x = 6x - 15x2 - 4 + 10x

<=> -31x + 22 - 3x2 = 16x - 15x2 - 4

<=> 31x - 22 + 3x2 + 16x - 15x2 - 4 = 0

<=> 47x - 18 - 12x2 = 0

<=> -12x2 + 47x - 26 = 0

<=> 12x2 - 47x + 26 = 0

<=> 12x2 - 8x - 39x + 26 = 0

<=> 4x(3x - 2) - 13(3x - 2) = 0

<=> (4x - 13)(3x - 2) = 0

<=> 4x - 13 = 0 hoặc 3x - 2 = 0

<=> x = 13/4 hoặc x = 2/3