K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Số các số hạng của S là:

(2015-1):1+1=2015 số

Tổng của S là:

(1+2015)x2015:2=2 031 120

                Đáp/Số: 2 031 120

1 tháng 9 2015

số số hạng: 

(2015-1):1+1=2015(số)

tổng:

(2015+1).2015:2=2031120

1 tháng 10 2017

S=1+2+2^2+2^3+....+2^59 chia hết cho 3

S=(1+2)+(2^2+2^3)+..+(2^58+2^59)

S=1x(1+2)+2^2x(1+2)+.....+2^58x(1+2)

S=1x3+2^2x3+....+2^58x3

S=3x(1+2^2+.....+2^58)chia hết cho 3

Vậy S chia hết cho 3

tương tự chia hết cho 7 thì ghép 3 số đầu; 15 thì ghép 4 số

you học lớp mấy

27 tháng 9 2017

a) Ta có: \(S=1+2+2^2+...+2^{59}\)

\(\Rightarrow2S=2+2^2+2^3+...+2^{60}\)

\(\Rightarrow S=2S-S=\left(2+2^2+...+2^{60}\right)-\left(1+2+...+2^{59}\right)\)

\(\Rightarrow S=2^{60}-1\)

14 tháng 3 2017

bít kq nhưng ko thích giải

18 tháng 12 2020

cậu ko giúp cậu ấy thì thôi đừng bảo như thế

3 tháng 10 2017

1. S = 1 + 2 + 2^2 +.........+ 2^59

  2S = 2 + 2^2 + ...........+ 2^59 + 2 ^60

2S - S = (2 + 2^2 +.........+ 2^60) - (1 +2 + 2^2 +..........+ 2^59)

 S = 2^60 - 1

mà 2^60 -1 = 2^60 - 1 => S = 2^60 -1

2.

Ta có : S = 1 + 2 +..............+ 2^59

S = 1(1 +2) + 2^2(1 +2 ) +........+ 2^58(1 +2)

S = 1.3 + 2^2.3 +...............+ 2^58.3

S = 3.(1 + 2^2 +.............+2^58) nên S chia hết cho 3

Cứ như vậy bạn nhóm các số hạng của S để tạo thành tổng có kết quả là 7 và 15 rồi tự chứng minh nhé

1 tháng 5 2018

a) \(S=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\)

\(\Rightarrow2S=1+\frac{1}{2}+...+\frac{1}{2^{2013}}\)

\(\Rightarrow2S-S=1-\frac{1}{2^{2014}}\)

b) Ta có : \(S=1-\frac{1}{2^{2013}}< 1\left(ĐPCM\right)\)

15 tháng 4 2017

R.2=2+2^2+2^3+...+2^2015

R=(2+2^2+2^3+...+2^2015-1)-(1+2^2+2^3+...+2^2014)

R=(2^2015)-1

S=(2^2015)-1 / 1-(2^2015)

S=-1

bieu thuc do goi la R nhe

8 tháng 7 2018

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)

\(\Rightarrow S< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\)

Vậy S<1

8 tháng 7 2018

Ta có :

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{\left(n-1\right)^2}+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-2\right)\left(n-1\right)}+\frac{1}{\left(n-1\right)n}\)

\(\Rightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-2}-\frac{1}{n-1}+\frac{1}{n-1}-\frac{1}{n}\)

\(\Rightarrow S< 1-\frac{1}{n}< 1\)

Vậy \(S=1\)