Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 2014^1 + 2014^2 + 2014^3 + ... + 2014^2014 + 2014^2015
2014A = 2014^1 + 2014^2 + 2014^3 + 2014^4 + ... 2014^2015 + 2014^2016
2014A - A = ( 2014^1 + 2014^2 + 2014^3 + 2014^4 + .... + 2014^2015 + 2014^2016 ) - ( 1 + 2014^1 + 2014^2 + 2014^3 + ... + 2014^2014 + 2014^2015 )
2013A = 2014^2016 - 1
A = 2014^2016 - 1 / 2013
B = 3 - 3^2 + 3^3 + 3^4 + ... + 3^100 ( đề hơi vui )
3B = 3^2 - 3^3 + 3^4 + 3^5 + ... + 3^101
3B - B = ( 3^2 - 3^3 + 3^4 + 3^5 + ... + 3^101 ) - ( 3 - 3^2 + 3^3 + 3^4 + ... + 3^100 )
2B = ( 3^2 - 3^3 + 3^4 + 3^5 + ... + 3^101 ) - 3 + 3^2 - 3^3 - 3^4 - ... - 3^100
2B = 3^2 - 3^3 + 3^101 - 3 + 3^2 - 3^3
2B = 9 - 27 + 3^101 - 3 + 9 - 27
2B = -18 + 3^101 - 3 + ( -18 )
2B = -39 + 3^101
B = -39 + 3^101 / 2
A = 1 + 2014 + 20142 + 20143 + ... + 20142014 + 20142015
2014A = 2014 + 20142 + 20143 + 20144 + ... + 20142015 + 20142016
2014A - A = ( 2014 + 20142 + 20143 + 20144 + ... + 20142015 + 20142016 ) - ( 1 + 2014 + 20142 + 20143 + ... + 20142014 + 20142015 )
2013A = 20142016 - 1
A \(=\frac{2014^{2016}-1}{2013}\)
\(A=\left[1+\left(-2\right)\right]+\left[3+\left(-4\right)\right]+....+\left[2013+\left(-2014\right)+2015\right]\)
\(A=\left(-1\right)+\left(-1\right)+....+\left(-1\right)+2015\left(\text{1007 số hạng }\left(-1\right)\right)=1008\)
\(\cdot DuyNam\)
\(S=\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+...+\left(-1\right)^{2014}+\left(-1\right)^{2015}\)
\(S=\left(-1\right)+1+\left(-1\right)+...+1+\left(-1\right)\) (2015 thừa số)
`-> S= (-1)`
a, s1 có 2015 hạng tử
=> s1= (2014:2).-1+2015=1007.(-1)+2015=1008
Lời giải:
a,S1=1+(-2)+3+(-4)+...+(-2014)+2015
=(1-2)+(3-4)+...+(2013-2014)+2015
=-1+(-1)+...+(-1)+2015
=-1.1007+2015
=(-1007)+2015
=1008
b,S2=(-2)+4+(-6)+8+...+(-2014)+2016
=(-2+4)+(-6+8)+...+(-2014+2016)
=2+2+...+2
=2.504
=1008
c,S3=1+(-3)+5+(-7)+...+2013+(-2015)
=(1-3)+(5-7)+...+(2013-2015)
=(-2)+(-2)+...+(-2)
=(-2).504
=-1008
d,S4=(-2015)+(-2014)+(-2013)+...+2015+2016
=(-2015+2015)+...+0+2016
=0+...+0+2016
=2016
STUDY WELL !
\(1.2.3....2015-1.2.3....2014-1.2.3....2013.2014^2\)
\(=1.2.3...\left(2014+1\right)-1.2.3...\left(2014+1\right)\)
\(=0\)
\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(< \frac{1}{1}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=\frac{1}{1}+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\frac{1}{1}+\frac{1}{1}=2\)
\(\Rightarrow\)\(A< 2\left(đpcm\right)\)
chúc bạn học tốt!!!
Bài 6 :
2S = 6 + 3 + 3/2 + ... + 3/2^8
2S = 6 - 3/2^9 + S
S = 6 - 3/2^9
Vậy S = 6 - 3/2^9
Bài 7 :
Ta có :
A = 1/1 + 1/2^2 + 1/3^2 + ... + 1/50^2 < 1 + 1/(1x2) + 1/(2x3) + ... + 1/(49x50) = 1 + 1 - 1/50 < 1 + 1 = 2
=) A < 2
Vậy A < 2
Bài 8 :
Do A = 1 + 2/(2015^2014 - 1 ) và B = 1 + 2/(2015^2014 - 3 ) mà 2/(2015^2014 -1) < 2/(2015^2014 - 3 )
=) A < B
Vậy A < B
Bài 9:
Do 196/197 > 196/(197+198) và 197/198 > 197/(197+198)
=) A > B
Vậy A > B
R.2=2+2^2+2^3+...+2^2015
R=(2+2^2+2^3+...+2^2015-1)-(1+2^2+2^3+...+2^2014)
R=(2^2015)-1
S=(2^2015)-1 / 1-(2^2015)
S=-1
bieu thuc do goi la R nhe