Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{14^5.9^4-6^9.49^2}{2^{10}.49^3.3^8+6^8.7^5.13}\)
\(=\dfrac{2^5.7^5.3^8-2^9.3^9.7^4}{2^{10}.7^6.3^8+2^8.3^8.7^5.13}\)
\(=\dfrac{2^5.7^4.3^8\left(7-2^4.3\right)}{2^8.3^8.7^5\left(2^2.7+13\right)}\)
\(=\dfrac{-41}{2^3.7.41}\)
\(=\dfrac{-1}{56}\)
a)\(\dfrac{2^{15}.3^8}{2^6.3^6.2^9}\)\(\dfrac{ }{ }\)=\(^{3^2}\)=9
b)\(\dfrac{2^{12}.3^{10}+2^9.3^9.2^3.15}{-2^{12}.3^{12}-2^{11}.3^{11}}\)=\(\dfrac{2^{11}.3^{11}.\left(1+15\right)}{2^{11}.3^{11}\left(-2.3-1\right)}\)
=\(\dfrac{32}{-21}\)
c)\(\dfrac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}\)=\(\dfrac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1+5\right)}\)=\(-\dfrac{1}{3}\)
em dựa vào vd \(\dfrac{4^{16}}{2^8}\)= \(\dfrac{\left(2^2\right)^{16}}{2^8}=\dfrac{2^{16\cdot2}}{2^8}=2^4=16\)
=(2^199.2-2^199)-(2^197.2-2^197)-......-(2.2-2) gợi ý thôi
Theo t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}=\dfrac{1+5y-1+7y}{5x-4x}=\dfrac{-2y}{x}\)
\(\Leftrightarrow\dfrac{1+5y}{5x}=-\dfrac{2y}{x}\)
\(\Leftrightarrow\dfrac{1+5y}{5}=-2y\)
\(\Leftrightarrow1+5y=-2.y.5\)
\(\Leftrightarrow1+5y=-10y\)
\(\Leftrightarrow5y+10y=1\)
\(\Leftrightarrow15y=1\)
\(\Leftrightarrow y=\dfrac{1}{15}\)
\(\Leftrightarrow x=2\)
Vậy ...
\(P=\dfrac{2^5\cdot7^5\cdot3^8-2^9\cdot3^9\cdot7^4}{2^{10}\cdot7^6\cdot3^8+2^8\cdot3^8\cdot7^5\cdot13}\)
\(=\dfrac{2^5\cdot7^4\cdot3^8\left(7-2^4\cdot3\right)}{2^8\cdot3^8\cdot7^5\cdot\left(2^2\cdot7+13\right)}\)
\(=\dfrac{1}{8}\cdot\dfrac{1}{7}\cdot\dfrac{7-16\cdot3}{4\cdot7+13}=\dfrac{1}{56}\cdot\left(-1\right)=-\dfrac{1}{56}\)