Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x+4\right)^2-10x-\left(x-4\right)\left(x+4\right)\)
\(=9x^2+24x+16-10x-x^2+16\)
\(=8x^2+14x\)
P = ( 3x + 4 )2 - 10x - ( x - 4 )( x + 4 )
P = 9x2 + 24x + 16 - 10x - ( x2 - 16 )
P = 9x2 + 24x + 16 - 10x - x2 + 16
P = 8x2 + 14x + 32
P = 2( 4x2 + 7x + 16 )
\(A=\frac{x^3-3x^2-7x-15}{x^5-x^4-10x^3-38x^2-51x-45}\)
\(=\frac{x^2\left(x-5\right)+2x\left(x-5\right)+3\left(x-5\right)}{x^4\left(x-5\right)+4x^3\left(x-5\right)+10x^2\left(x-5\right)+12x\left(x-5\right)+9\left(x-5\right)}\)
\(=\frac{\left(x-5\right)\left(x^2+2x+3\right)}{\left(x-5\right)\left(x^4+4x^3+10x^2+12x+9\right)}\)
\(=\frac{x^2+2x+3}{x^4+4x^3+10x^2+12x+9}\)
\(=\frac{x^2+2x+3}{\left(x^2\right)^2+2.x^2.2x+\left(2x\right)^2+6x^2+12x+9}\)
\(=\frac{x^2+2x+3}{\left(x^2+2x\right)^2+2.\left(x^2+2x\right).3+3^2}\)
\(=\frac{\left(x^2+2x+3\right)}{\left(x^2+2x+3\right)^2}=\frac{1}{x^2+2x+3}\)
b, \(A=\frac{1}{x^2+2x+3}=\frac{1}{\left(x+1\right)^2+2}\le\frac{1}{2}\forall x\)
Dấu "=" xảy ra khi: \(x+1=0\Rightarrow x=-1\)
Vậy GTLN của A là \(\frac{1}{2}\) khi x = -1
(x-3)(x2 + 3x +9)- ((x-4)((x+4)=21
x3 - 27 - x2 + 4 = 21
x2 + x - 27 -x2 + 4 =21
x=27 -4 + 21
x= 44
2)
( x _ 3 ) ( x^2 + 3x + 9 ) - ( x - 4 ) . ( x + 4 ) = 21
= x^3 - 9 - x^2 - 2^2 = 21
= x - 9 - x^2 - 4
= x^3 - x^2 - 9 - 4
x = - 9 - 4 = - 13
\(a,\left(a+2\right)^2-\left(a+2\right)\left(a-2\right)\)
\(=a^2+4x+4-a^2+4\)
\(=4x+8\)
\(=4\left(x+2\right)\)
\(b,\left(a+b\right)^2-\left(a-b\right)^2\)
\(=a^2+2ab+b^2-\left(a^2-2ab+b^2\right)\)
\(=a^2+2ab+b^2-a^2+2ab-b^2\)
\(=4ab\)
\(c,\left(3x+4\right)^2-10x-\left(x+4\right)\left(x-4\right)\)
\(=9x^2+24x+16-10x-x^2+16\)
\(=8x^2+14x+32\)
\(=2\left(4x^2+7x+16\right)\)
a)(3x+4)2-10x-(x-4)(x+4)
9x2+24x+16-10x-x2+16
8x2+14x+32
b)(x+1)(x-2)(x2+1)(x+2)(x-1)(x2+4)
(x+1)(x-1)(x+2)(x-2)(x2+1)(x2+4)
(x2-1)(x2-4)(7x2+4)
(-3x2+4)(7x2+4)
-21x2-12x2+28x2+16
16-x2
a)(3x+4)2-10x-(x-4)(x+4)
9x2+24x+16-10x-x2+16
8x2+14x+32
b)(x+1)(x-2)(x2+1)(x+2)(x-1)(x2+4)
(x+1)(x-1)(x+2)(x-2)(x2+1)(x2+4)
(x2-1)(x2-4)(7x2+4)
(-3x2+4)(7x2+4)
-21x2-12x2+28x2+16
16-x2
Ta có: \(\frac{\left(x^2\right)^2-10x^2+9}{x^4+6x^3+9x^2+2x^3+12x^2+18x+x^2+6x+9}\)
= \(\frac{\left(x^2-1\right)\left(x^2-3\right)}{x^2\left(x^2+6x+9\right)+2x\left(x^2+6x+9\right)+\left(x^2+6x+9\right)}\)
= \(\frac{\left(x-1\right)\left(x+1\right)\left(x-3\right)\left(x+3\right)}{\left(x^2+6x+9\right)\left(x^2+2x+1\right)}\)
= \(\frac{\left(x-1\right)\left(x+1\right)\left(x-3\right)\left(x+3\right)}{\left(x+3\right)^2.\left(x+1\right)^2}\)
= \(\frac{\left(x-1\right)\left(x+1\right)\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+3\right)\left(x+1\right)\left(x+1\right)}\)
= \(\frac{\left(x-1\right)\left(x-3\right)}{\left(x+1\right)\left(x+3\right)}\)
D = (3x - 2)^2 - 3(x - 4)(4 + x) + (x - 3)^3 - (x^2 - x + 1)(x + 1)
D = 9x^2 - 12x + 4 - 3x^2 + 48 + x^3 - 9x^2 + 27x - 27 - x^3 - 1
D = -3x^2 + 15x + 24
P = 9x2 + 24x + 16 -10x - x2 +16
P = 8x2 +14x +32
P = 2(4x2 + 7x +16)
P = ( 3x + 4 )2 - 10x - ( x - 4 )( x + 4 )
P = 9x2 + 24x + 16 - 10x - ( x2 - 16 )
P = 9x2 + 24x + 16 - 10x - x2 + 16
P = 8x2 + 14x + 32
P = 2( 4x2 + 7x + 16 )