K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

\(a,\left(a+2\right)^2-\left(a+2\right)\left(a-2\right)\)

\(=a^2+4x+4-a^2+4\)

\(=4x+8\)

\(=4\left(x+2\right)\)

\(b,\left(a+b\right)^2-\left(a-b\right)^2\)

\(=a^2+2ab+b^2-\left(a^2-2ab+b^2\right)\)

\(=a^2+2ab+b^2-a^2+2ab-b^2\)

\(=4ab\)

\(c,\left(3x+4\right)^2-10x-\left(x+4\right)\left(x-4\right)\)

\(=9x^2+24x+16-10x-x^2+16\)

\(=8x^2+14x+32\)

\(=2\left(4x^2+7x+16\right)\)

9 tháng 8 2017

thanks ban nha ^^

27 tháng 11 2018

\(A=\frac{x^3-3x^2-7x-15}{x^5-x^4-10x^3-38x^2-51x-45}\)

\(=\frac{x^2\left(x-5\right)+2x\left(x-5\right)+3\left(x-5\right)}{x^4\left(x-5\right)+4x^3\left(x-5\right)+10x^2\left(x-5\right)+12x\left(x-5\right)+9\left(x-5\right)}\)

\(=\frac{\left(x-5\right)\left(x^2+2x+3\right)}{\left(x-5\right)\left(x^4+4x^3+10x^2+12x+9\right)}\)

\(=\frac{x^2+2x+3}{x^4+4x^3+10x^2+12x+9}\)

\(=\frac{x^2+2x+3}{\left(x^2\right)^2+2.x^2.2x+\left(2x\right)^2+6x^2+12x+9}\)

\(=\frac{x^2+2x+3}{\left(x^2+2x\right)^2+2.\left(x^2+2x\right).3+3^2}\)

\(=\frac{\left(x^2+2x+3\right)}{\left(x^2+2x+3\right)^2}=\frac{1}{x^2+2x+3}\)

b, \(A=\frac{1}{x^2+2x+3}=\frac{1}{\left(x+1\right)^2+2}\le\frac{1}{2}\forall x\)

Dấu "=" xảy ra khi: \(x+1=0\Rightarrow x=-1\)

Vậy GTLN của A là \(\frac{1}{2}\) khi x = -1

5 tháng 7 2016

Các bạn cố gắng giúp mình nha . Mình xin chân thành cảm ơn 

NV
22 tháng 3 2021

Tất cả các câu này đều có thể chứng minh bằng phép biến đổi tương đương:

a.

\(\Leftrightarrow a^{10}+b^{10}+a^4b^6+a^6b^4\le2a^{10}+2b^{10}\)

\(\Leftrightarrow a^{10}-a^6b^4+b^{10}-a^4b^6\ge0\)

\(\Leftrightarrow a^6\left(a^4-b^4\right)-b^6\left(a^4-b^4\right)\ge0\)

\(\Leftrightarrow\left(a^6-b^6\right)\left(a^4-b^4\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\left(a^2-b^2\right)\left(a^2+b^2\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^2+b^2\right)\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

b.

\(\Leftrightarrow\left(\dfrac{a^2}{4}+b^2+c^2-ab+ac-2bc\right)+b^2-2b+1+c^2\ge0\)

\(\Leftrightarrow\left(\dfrac{a}{2}-b+c\right)^2+\left(b-1\right)^2+c^2\ge0\) (luôn đúng)

NV
22 tháng 3 2021

c.

\(\Leftrightarrow a^2+4b^2+4c^2-4ab-8bc+4ac\ge0\)

\(\Leftrightarrow\left(a-2b+2c\right)^2\ge0\) (luôn đúng)

d.

\(\Leftrightarrow4a^4-8a^3+4a^2+a^2-2a+1\ge0\)

\(\Leftrightarrow\left(2a^2-2a\right)^2+\left(a-1\right)^2\ge0\) (luôn đúng)

25 tháng 8 2016

a)(3x+4)2-10x-(x-4)(x+4)

    9x2+24x+16-10x-x2+16

    8x2+14x+32

b)(x+1)(x-2)(x2+1)(x+2)(x-1)(x2+4)

   (x+1)(x-1)(x+2)(x-2)(x2+1)(x2+4)

    (x2-1)(x2-4)(7x2+4)

    (-3x2+4)(7x2+4)

    -21x2-12x2+28x2+16

    16-x2

22 tháng 7 2018

a)(3x+4)2-10x-(x-4)(x+4)

9x2+24x+16-10x-x2+16

8x2+14x+32

b)(x+1)(x-2)(x2+1)(x+2)(x-1)(x2+4)

(x+1)(x-1)(x+2)(x-2)(x2+1)(x2+4)

(x2-1)(x2-4)(7x2+4)

(-3x2+4)(7x2+4)

-21x2-12x2+28x2+16

16-x2

15 tháng 3 2019

sáng mai chị làm cho

15 tháng 8 2020

a) A = (x+3)2 + (x-3)(x+3) - 2(x+2)(x - 4)

        = (x + 3)(x + 3) + (x - 3)(x + 3) - 2[x(x - 4) + 2(x - 4)]

        = x(x + 3) + 3(x + 3) + x(x + 3) - 3(x + 3) - 2[x2 - 4x + 2x - 8]

        = x2 + 3x + 3x + 9 + x2 + 3x - 3x - 9 - 2(x2 - 2x - 8)

        = x2 + 3x + 3x + 9 +x2 + 3x - 3x - 9 - 2x2 + 4x + 16

        = (x2 + x2 - 2x2) + (3x + 3x + 3x - 3x + 4x) + (9 - 9 + 16) = 10x + 16

Thay x = -1/2 vào biểu thức trên ta có : \(10\cdot\left(-\frac{1}{2}\right)+16=-5+16=11\)

b) \(B=\left(3x+4\right)^2-\left(x-4\right)\left(x+4\right)-10x\)

\(B=9x^2+24x+16-x\left(x+4\right)+4\left(x+4\right)-10x\)

\(B=9x^2+24x+16-x^2-4x+4x+16-10x\)

\(B=\left(9x^2-x^2\right)+\left(24x-4x+4x-10x\right)+\left(16+16\right)\)

\(B=8x^2+14x+32\)

Thay x = -1/10 vào biểu thức trên ta có : \(B=8\cdot\left(-\frac{1}{10}\right)^2+14\cdot\left(-\frac{1}{10}\right)+32=\frac{767}{25}\)

c) \(C=\left(x+1\right)^2-\left(2x-1\right)^2+3\left(x-2\right)\left(x+2\right)\)

\(C=x^2+2x+1-\left(2x-1\right)\left(2x-1\right)+3\left(x^2-4\right)\)

\(C=x^2+2x+1-2x\left(2x-1\right)+1\left(2x-1\right)+3x^2-12\)

\(C=x^2+2x+1-4x^2+2x+2x-1+3x^2-12\)

\(C=\left(x^2-4x^2+3x^2\right)+\left(2x+2x+2x\right)+\left(1-1-12\right)\)

\(C=6x-12\)

Thay x = 1 vào biểu thức ta có : C = 6.1 - 12 = 6 -12 = -6

Còn bài kia làm nốt đi

28 tháng 8 2021

a. y4 - 14y2 + 49

Gọi y2 là t, ta có:

t2 - 14t + 49

<=> t2 - 14t + 72

<=> (t - 7)2

Thay x2 = t

<=> (x2 - 7)2

b. \(\dfrac{1}{4}-x^2\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^2-x^2\)

\(\Leftrightarrow\left(\dfrac{1}{2}-x\right)\left(\dfrac{1}{2}+x\right)\)

c. x4 - 16

<=> (x2)2 - 42

<=> (x2 - 4)(x2 + 4)

d. x2 - 9

<=> x2 - 32

<=> (x - 3)(x + 3)

 

\(\text{Đ}K\text{X}\text{Đ}:x\ne\pm2\)

Ta có: \(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right)\div\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)

\(=\left(\frac{2x+2-4}{\left(x+2\right)^2}\right):\left(\frac{2-x-2}{\left(x+2\right)\left(x-2\right)}\right)=\frac{2x-2}{\left(x+2\right)^2}\cdot\frac{\left(x+2\right)\left(x-2\right)}{-x}\)

\(=\frac{2\left(x-1\right)\left(x-2\right)}{-x\left(x+2\right)}\)