Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)A=(3-sqrt5)sqrt{3+sqrt5}+(3+sqrt5)sqrt{3-sqrt5}`
`=sqrt{3-sqrt5}sqrt{3+sqrt5}(sqrt{3+sqrt5}+sqrt{3-sqrt5})`
`=sqrt{9-5}(sqrt{3+sqrt5}+sqrt{3-sqrt5})`
`=2(sqrt{3+sqrt5}+sqrt{3-sqrt5})`
`=sqrt2(sqrt{6+2sqrt5}+sqrt{6-2sqrt5})`
`=sqrt2(sqrt{(sqrt5+1)^2}+sqrt{(sqrt5+1)^2})`
`=sqrt2(sqrt5+1+sqrt5-1)`
`=sqrt{2}.2sqrt5`
`=2sqrt{10}`
`b)B=(5+sqrt{21})(sqrt{14}-sqrt6)sqrt{5-sqrt{21}}`
`=sqrt{5+sqrt{21}}sqrt{5-sqrt{21}}sqrt{5+sqrt{21}}(sqrt{14}-sqrt6)`
`=sqrt{25-21}sqrt{5+sqrt{21}}(sqrt{14}-sqrt6)`
`=2sqrt{5+sqrt{21}}(sqrt{14}-sqrt6)`
`=2sqrt2sqrt{5+sqrt{21}}(sqrt{7}-sqrt3)`
`=2sqrt{10+2sqrt{21}}(sqrt{7}-sqrt3)`
`=2sqrt{(sqrt3+sqrt7)^2}(sqrt{7}-sqrt3)`
`=2(sqrt3+sqrt7)(sqrt{7}-sqrt3)`
`=2(7-3)`
`=8`
`c)C=sqrt{4+sqrt7}-sqrt{4-sqrt7}`
`=sqrt{(8+2sqrt7)/2}-sqrt{(8-2sqrt7)/2}`
`=sqrt{(sqrt7+1)^2/2}-sqrt{(sqrt7+1)^2/2}`
`=(sqrt7+1)/sqrt2-(sqrt7-1)/2`
`=2/sqrt2=sqrt2`
i: =-12*căn 3/2căn 3=-6
h: =72căn 2/12căn 2=6
g: =25căn 12/5căn 6=5căn 2
f: =(15:5)*căn 6:3=3căn 2
d: =-1/2*6*căn 10=-3căn 10
`a)((sqrt(14)-sqrt7)/(1-sqrt2)+(sqrt{15}-sqrt5)/(1-sqrt3)):1/(sqrt7-sqrt5)`
`=((sqrt7(sqrt2-1))/(1-sqrt2)+(sqrt5(sqrt3-1))/(1-sqrt3)).(sqrt7-sqrt5)`
`=(-sqrt7-sqrt5)*(sqrt7-sqrt5)`
`=-(sqrt7+sqrt5)(sqrt7+sqrt5)`
`=-(7-5)=-2`
`b)sqrt2+1/sqrt{5+2sqrt6}+2/sqrt{8+2sqrt{15}}`
`=sqrt2+1/sqrt{3+2sqrt{3}.sqrt2+2}+2/sqrt{5+2sqrt{5}.sqrt3+3}`
`=sqrt2+1/sqrt{(sqrt3+sqrt2)^2}+2/sqrt{(sqrt5+sqrt3)^2}`
`=sqrt2+1/(sqrt3+sqrt2)+2/(sqrt5+sqrt3)`
`=sqrt2+((sqrt3+sqrt2)(sqrt3-sqrt2))/(sqrt3+sqrt2)+((sqrt5+sqrt3)(sqrt5-sqrt3))/(sqrt5+sqrt3)`
`=sqrt2+sqrt3-sqrt2+sqrt5-sqrt3=sqrt5`
a) Ta có: \(\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
\(=\left(-\dfrac{\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\dfrac{\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
\(=-2\)
b) Ta có: \(\sqrt{2}+\dfrac{1}{\sqrt{5+2\sqrt{6}}}+\dfrac{2}{\sqrt{8+2\sqrt{15}}}\)
\(=\sqrt{2}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+\dfrac{2}{\sqrt{5}+\sqrt{3}}\)
\(=\sqrt{2}+\sqrt{3}-\sqrt{2}+\sqrt{5}-\sqrt{3}\)
\(=\sqrt{5}\)
a) Ta có: \(\dfrac{2-\sqrt{2}}{1-\sqrt{2}}+\dfrac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}\)
\(=\dfrac{-\sqrt{2}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\dfrac{-\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\)
\(=-2\sqrt{2}\)
b) Ta có: \(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}-\left(2+\sqrt{3}\right)\)
\(=\sqrt{3}+2+\sqrt{2}-2-\sqrt{3}\)
\(=\sqrt{2}\)
c) Ta có: \(\left(\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}-2\right)\left(\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}-2\right)\)
\(=\left(\dfrac{-\sqrt{5}\left(2-\sqrt{5}\right)}{2-\sqrt{5}}-2\right)\left(\dfrac{\sqrt{5}\left(\sqrt{5}+3\right)}{\sqrt{5}+3}-2\right)\)
\(=\left(-\sqrt{5}-2\right)\left(\sqrt{5}-2\right)\)
\(=-\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)=-1\)
d) Ta có: \(\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}+\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\)
\(=\left(\sqrt{2}-\sqrt{3}\right)^2+\left(\sqrt{3}+\sqrt{2}\right)^2\)
\(=5-2\sqrt{6}+5+2\sqrt{6}\)
=10
a) \(A=\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}-\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}=\left|\sqrt{3}-1\right|-\left|\sqrt{3}+1\right|\)
\(=\sqrt{3}-1+-\sqrt{3}-1=-2\)
b) \(B=\sqrt{11-6\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
\(=\sqrt{3^2-2.3.\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2}\)
\(=\sqrt{\left(3-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}=\left|3-\sqrt{2}\right|-\left|\sqrt{2}-1\right|\)
\(=3-\sqrt{2}-\sqrt{2}+1=4-2\sqrt{2}\)
c) \(C=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{7-2\sqrt{10}}\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\sqrt{\left(\sqrt{5}\right)^2-2.\sqrt{5}.\sqrt{2}+\left(\sqrt{2}\right)^2}\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\left(\sqrt{5}+\sqrt{3}\right)\left|\sqrt{5}-\sqrt{2}\right|\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{2}\right)=5-\sqrt{10}+\sqrt{15}-\sqrt{6}\)
a) \(=2\sqrt{5}-3\sqrt{5}+\sqrt{5}-1=-1\)
b) \(=\left[\sqrt{14}+\dfrac{\sqrt{6}\left(\sqrt{2}+\sqrt{5}\right)}{\sqrt{2}+\sqrt{5}}\right].\sqrt{\left(\sqrt{\dfrac{7}{2}}-\sqrt{\dfrac{3}{2}}\right)^2}\)
\(=\left(\sqrt{14}+\sqrt{6}\right)\left(\sqrt{\dfrac{7}{2}}-\sqrt{\dfrac{3}{2}}\right)\)
\(=\sqrt{49}-\sqrt{21}+\sqrt{21}-\sqrt{9}\)
\(=7-3=4\)
\(a,=\sqrt{2}\left(\sqrt{5}+3\right)\sqrt{\left(3-\sqrt{5}\right)^2}=\sqrt{2}\left(\sqrt{5}+3\right)\left(3-\sqrt{5}\right)=4\sqrt{2}\\ b,=\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}=\sqrt{4}=2\)
a)\(=\left(\sqrt{10}+3\sqrt{2}\right)\sqrt{\left(3-\sqrt{5}\right)^2}=\left(\sqrt{10}+3\sqrt{2}\right)\left(3-\sqrt{5}\right)=3\sqrt{10}-5\sqrt{2}+9\sqrt{2}-3\sqrt{10}=4\sqrt{2}\)
b) \(=\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}=\sqrt{9-5}=\sqrt{4}=2\)