Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(=2\sqrt{5}-3\sqrt{5}+\sqrt{5}-1=-1\)
b) \(=\left[\sqrt{14}+\dfrac{\sqrt{6}\left(\sqrt{2}+\sqrt{5}\right)}{\sqrt{2}+\sqrt{5}}\right].\sqrt{\left(\sqrt{\dfrac{7}{2}}-\sqrt{\dfrac{3}{2}}\right)^2}\)
\(=\left(\sqrt{14}+\sqrt{6}\right)\left(\sqrt{\dfrac{7}{2}}-\sqrt{\dfrac{3}{2}}\right)\)
\(=\sqrt{49}-\sqrt{21}+\sqrt{21}-\sqrt{9}\)
\(=7-3=4\)
Bạn chia nhỏ ra để nhận được câu tl sớm nhất nhé!Bạn đặt câu hỏi free mà để dày cộp như này khum ai dám làm =(((
i: =-12*căn 3/2căn 3=-6
h: =72căn 2/12căn 2=6
g: =25căn 12/5căn 6=5căn 2
f: =(15:5)*căn 6:3=3căn 2
d: =-1/2*6*căn 10=-3căn 10
Lời giải:
a.
\(=2\sqrt{4^2.5}+3\sqrt{3^2.5}-\sqrt{7^2.5}=2.4\sqrt{5}+3.3\sqrt{5}-7\sqrt{5}\)
\(=8\sqrt{5}+9\sqrt{5}-7\sqrt{5}=10\sqrt{5}\)
b.
\(=\frac{3(2-\sqrt{3})}{(2-\sqrt{3})(2+\sqrt{3})}+\frac{13(4+\sqrt{3})}{(4-\sqrt{3})(4+\sqrt{3})}+\frac{6\sqrt{3}}{3}\)
\(=\frac{6-3\sqrt{3}}{1}+\frac{13(4+\sqrt{3})}{13}+2\sqrt{3}=6-3\sqrt{3}+4+\sqrt{3}+2\sqrt{3}\)
\(=10\)
c.
\(=\left[\frac{\sqrt{7}(\sqrt{2}-1)}{\sqrt{2}-1}+\frac{\sqrt{5}(\sqrt{3}-1)}{\sqrt{3}-1}\right].(\sqrt{7}-\sqrt{5})\)
\(=(\sqrt{7}+\sqrt{5})(\sqrt{7}-\sqrt{5})=7-5=2\)
d.
\(=|2+\sqrt{3}|-\sqrt{5^2-2.5\sqrt{3}+3}=|2+\sqrt{3}|-\sqrt{(5-\sqrt{3})^2}\)
\(=|2+\sqrt{3}|-|5-\sqrt{3}|=2+\sqrt{3}-(5-\sqrt{3})=-3+2\sqrt{3}\)
a) Ta có: \(2\sqrt{80}+3\sqrt{45}-\sqrt{245}\)
\(=8\sqrt{5}+9\sqrt{5}-7\sqrt{5}\)
\(=10\sqrt{5}\)
b) Ta có: \(\dfrac{3}{2+\sqrt{3}}+\dfrac{13}{4-\sqrt{3}}+\dfrac{6}{\sqrt{3}}\)
\(=3\left(2-\sqrt{3}\right)+4+\sqrt{3}+2\sqrt{3}\)
\(=6-2\sqrt{3}+4+3\sqrt{3}\)
\(=10+\sqrt{3}\)
c) Ta có: \(\left(\dfrac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}+\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
\(=\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)
=7-5=2
d) Ta có: \(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{28-10\sqrt{3}}\)
\(=2+\sqrt{3}-5+\sqrt{3}\)
\(=-3+2\sqrt{3}\)
a. \(2\sqrt{80}+3\sqrt{45}-\sqrt{245}\)
\(=2.4\sqrt{5}+3.3\sqrt{5}-7\sqrt{5}\)
\(=8\sqrt{5}+9\sqrt{5}-7\sqrt{5}\)
\(=10\sqrt{5}\)
b. \(\dfrac{3}{2+\sqrt{3}}+\dfrac{13}{4-\sqrt{3}}+\dfrac{6}{\sqrt{3}}\)
\(=\dfrac{3\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+\dfrac{13\left(4+\sqrt{3}\right)}{\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)}+\dfrac{6\sqrt{3}}{\sqrt{3}.\sqrt{3}}\)
\(=\dfrac{3\left(2-\sqrt{3}\right)}{4-3}+\dfrac{13\left(4+\sqrt{3}\right)}{16-3}+\dfrac{6\sqrt{3}}{3}\)
\(=3\left(2-\sqrt{3}\right)+\dfrac{13\left(4+\sqrt{3}\right)}{13}+2\sqrt{3}\)
\(=6-3\sqrt{3}+4+\sqrt{3}+2\sqrt{3}\)
\(=10\)
c. \(\left(\dfrac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}+\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
\(=\left(\dfrac{\sqrt{7}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}+\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\right).\left(\sqrt{7}-\sqrt{5}\right)\)
\(=\left(\sqrt{7}+\sqrt{5}\right).\left(\sqrt{7}-\sqrt{5}\right)\)
\(=7-5=2\)
d. \(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{28-10\sqrt{3}}\)
\(=\left|2+\sqrt{3}\right|-\sqrt{5^2-2.5.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\left|2+\sqrt{3}\right|-\left(5-\sqrt{3}\right)^2\)
\(=\left|2+\sqrt{3}\right|-\left|5-\sqrt{3}\right|\)
\(=2+\sqrt{3}-\left(5-\sqrt{3}\right)\) (vì \(\left|2+\sqrt{3}\right|\ge0,\left|5-\sqrt{3}\right|\ge0\))
\(=2+\sqrt{3}-5+\sqrt{3}\)
\(=2\sqrt{3}-3\)
a) Ta có: \(\dfrac{2-\sqrt{2}}{1-\sqrt{2}}+\dfrac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}\)
\(=\dfrac{-\sqrt{2}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\dfrac{-\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\)
\(=-2\sqrt{2}\)
b) Ta có: \(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}-\left(2+\sqrt{3}\right)\)
\(=\sqrt{3}+2+\sqrt{2}-2-\sqrt{3}\)
\(=\sqrt{2}\)
c) Ta có: \(\left(\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}-2\right)\left(\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}-2\right)\)
\(=\left(\dfrac{-\sqrt{5}\left(2-\sqrt{5}\right)}{2-\sqrt{5}}-2\right)\left(\dfrac{\sqrt{5}\left(\sqrt{5}+3\right)}{\sqrt{5}+3}-2\right)\)
\(=\left(-\sqrt{5}-2\right)\left(\sqrt{5}-2\right)\)
\(=-\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)=-1\)
d) Ta có: \(\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}+\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\)
\(=\left(\sqrt{2}-\sqrt{3}\right)^2+\left(\sqrt{3}+\sqrt{2}\right)^2\)
\(=5-2\sqrt{6}+5+2\sqrt{6}\)
=10
a: \(=\left(-\sqrt{5}-\sqrt{7}\right)\cdot\left(\sqrt{7}-\sqrt{5}\right)\)
\(=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)
=-2
b: \(=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
\(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{3}-1+\sqrt{3}+1}{\sqrt{2}}=\sqrt{6}\)
c: \(=\dfrac{\sqrt{10}\left(\sqrt{2}-\sqrt{5}\right)}{\sqrt{2}-\sqrt{5}}-2-\sqrt{10}+3\sqrt{7}+2\)
\(=\sqrt{10}-\sqrt{10}+3\sqrt{7}=3\sqrt{7}\)
`a)((sqrt(14)-sqrt7)/(1-sqrt2)+(sqrt{15}-sqrt5)/(1-sqrt3)):1/(sqrt7-sqrt5)`
`=((sqrt7(sqrt2-1))/(1-sqrt2)+(sqrt5(sqrt3-1))/(1-sqrt3)).(sqrt7-sqrt5)`
`=(-sqrt7-sqrt5)*(sqrt7-sqrt5)`
`=-(sqrt7+sqrt5)(sqrt7+sqrt5)`
`=-(7-5)=-2`
`b)sqrt2+1/sqrt{5+2sqrt6}+2/sqrt{8+2sqrt{15}}`
`=sqrt2+1/sqrt{3+2sqrt{3}.sqrt2+2}+2/sqrt{5+2sqrt{5}.sqrt3+3}`
`=sqrt2+1/sqrt{(sqrt3+sqrt2)^2}+2/sqrt{(sqrt5+sqrt3)^2}`
`=sqrt2+1/(sqrt3+sqrt2)+2/(sqrt5+sqrt3)`
`=sqrt2+((sqrt3+sqrt2)(sqrt3-sqrt2))/(sqrt3+sqrt2)+((sqrt5+sqrt3)(sqrt5-sqrt3))/(sqrt5+sqrt3)`
`=sqrt2+sqrt3-sqrt2+sqrt5-sqrt3=sqrt5`
a) Ta có: \(\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
\(=\left(-\dfrac{\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\dfrac{\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
\(=-2\)
b) Ta có: \(\sqrt{2}+\dfrac{1}{\sqrt{5+2\sqrt{6}}}+\dfrac{2}{\sqrt{8+2\sqrt{15}}}\)
\(=\sqrt{2}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+\dfrac{2}{\sqrt{5}+\sqrt{3}}\)
\(=\sqrt{2}+\sqrt{3}-\sqrt{2}+\sqrt{5}-\sqrt{3}\)
\(=\sqrt{5}\)