Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=(3n+3n)+(3+3)+(5n+5n)+(1+2)
=(3n)2+6+(5n)2+3
=32n2+52n2+6+3
=(9+25)n2+9
=34n2+9
Đặt :
\(A=\dfrac{3}{9.14}+\dfrac{3}{14.19}+........+\dfrac{3}{\left(5n-1\right)\left(5n+4\right)}\)
\(\Leftrightarrow\dfrac{5}{3}A=\dfrac{5}{9.14}+\dfrac{5}{14.19}+........+\dfrac{5}{\left(5n-1\right)\left(5n+4\right)}\)
\(\Leftrightarrow\dfrac{5}{3}A=\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...........+\dfrac{1}{5n-1}-\dfrac{1}{5n+4}\)
\(\Leftrightarrow\dfrac{5}{3}A=\dfrac{1}{9}-\dfrac{1}{5n+4}\)
\(\Leftrightarrow A=\left(\dfrac{1}{9}-\dfrac{1}{5n+4}\right):\dfrac{5}{3}\)
\(\Leftrightarrow A=\left(\dfrac{1}{9}-\dfrac{1}{5n+4}\right).\dfrac{3}{5}\)
\(\Leftrightarrow A=\dfrac{1}{9}.\dfrac{3}{5}-\dfrac{1}{5n+4}.\dfrac{3}{5}\)
\(\Leftrightarrow A=\dfrac{1}{15}-\dfrac{1}{5n+4}.\dfrac{3}{5}< \dfrac{1}{15}\)
\(\Leftrightarrow A< \dfrac{1}{15}\left(đpcm\right)\)