Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=x\left(x^2+y\right)-x^2\left(x+y\right)+y\left(x^4+x\right)\)
=> \(Q=\left(x^3+xy\right)-\left(x^3+x^2y\right)+\left(x^4y+xy\right)\)
=> \(Q=\left(x^3-x^3\right)+\left(xy+xy\right)+\left(x^4y-x^2y\right)\)
=> \(Q=x^4y-x^2y+2xy\)
=> \(Q=\frac{2^4.1}{2}-\frac{2^2.1}{2}+\frac{2.2.1}{2}\)
=> \(Q=2^3-2+2=2^3=8\)
Vậy \(Q=8\)
x( x^2 - y ) - x^2 ( x + y ) + y( x^2 - x )
=x3-xy-x3-x2y+x2y-xy
=-2xy
a) \(A=4x^2-4x+1+9-4x^2=-4x+10\)
\(=-4.\dfrac{1}{4}+10=9\)
b) \(B=x^3+xy-x^3-8y^3=y\left(x-8y^2\right)\)
\(=\left(-2\right).\left(32-32\right)=0\)
a: Ta có: \(A=\left(2x-1\right)^2+\left(3-2x\right)\left(3+2x\right)\)
\(=4x^2-4x+1+9-4x^2\)
\(=-4x+10\)
\(=-4\cdot\dfrac{1}{4}+10=-1+10=9\)
a) \(x\left(x-y\right)+y\left(x+y\right)=x^2-xy+xy+y^2=x^2+y^2\)
Thay x=-6 ; y=8 ta có:
\(x^2+y^2=\left(-6\right)^2+8^2=36+84=100\)
b)\(x\left(x^2-y\right)-x^2\left(x-y\right)+y\left(x^2-x\right)\\ =x^3-xy-x^3+x^2y+x^2y-xy\\ =2x^2y-2xy\\ =2xy\left(x-1\right)\)
Với x=\(\frac{1}{2}\) ; y=-100 ta có:
\(2xy\left(x-1\right)=2\cdot\frac{1}{2}\cdot\left(-100\right)\cdot\left(\frac{1}{2}-1\right)=-100\cdot-\frac{1}{2}=50\)
sửa đề : bạn check lại đề xem nhé
\(A=\left(x+y\right)^2+\left(x-y\right)^2-2\left(x+y\right)\left(y-x\right)\)
\(=\left(x+y\right)^2-2\left(x+y\right)\left(y-x\right)+\left(y-x\right)^2\)
\(=\left(x+y-y+x\right)^2=\left(2x\right)^2=4x^2\)
Thay x = -1 ; y = -2 ta được : \(4.1=4\)
\(A=\left(x+y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(y-x\right)\)
\(=2\left(x+y\right)^2-2\left(x+y\right)\left(y-x\right)=2\left(x+y\right)\left[\left(x+y\right)-\left(y-x\right)\right]\)
\(=2\left(x+y\right)\left(x+y-y+x\right)=2.2x\left(x+y\right)=4x\left(x+y\right)\)
Thay x = -1 ; y = -2 ta được : \(-4.\left(-3\right)=12\)