K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2021

\(P=x^2+8x+16+x^2-25-2x^2-2x=6x-9\\ Q=y\left(x-4\right)-5\left(x-4\right)=\left(y-5\right)\left(x-4\right)\\ Q=\left(5,5-5\right)\left(14-4\right)=0,5\cdot10=5\)

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

Bài 2:

a.

\(3x(x-4y)-\frac{12}{5}y(y-5x)=3x^2-12xy-\frac{12}{5}y^2+12xy\)

\(=3x^2-\frac{12}{5}y^2=3.4^2-\frac{12}{5}.(-5)^2=-12\)

b.

\(u=\frac{-1}{3}; v=\frac{-2}{3}\Rightarrow u+v+1=0\)

\(2u(1+u-v)-v(1-2u+v)=2u(1+u+v-2v)+v(1+u+v-3u)\)

\(=2u.(-2v)+v(-3u)=-4uv-3uv=-7uv=-7.\frac{-1}{3}.\frac{-2}{3}=\frac{-14}{9}\)

 

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

Bài 1:

\(A=x^6-(x^6-x^5)-(x^5+x^4)+(x^4-x^3)+(x^3+x^2)-(x^2+x)+1\)

\(=-x+1=-(x-1)=-(999-1)=-998\)

7 tháng 7 2017

\(Q=x\left(x^2+y\right)-x^2\left(x+y\right)+y\left(x^4+x\right)\)

=> \(Q=\left(x^3+xy\right)-\left(x^3+x^2y\right)+\left(x^4y+xy\right)\)

=> \(Q=\left(x^3-x^3\right)+\left(xy+xy\right)+\left(x^4y-x^2y\right)\)

=> \(Q=x^4y-x^2y+2xy\)

=> \(Q=\frac{2^4.1}{2}-\frac{2^2.1}{2}+\frac{2.2.1}{2}\)

=> \(Q=2^3-2+2=2^3=8\)

Vậy \(Q=8\)

17 tháng 10 2021

a) \(A=4x^2-4x+1+9-4x^2=-4x+10\)

\(=-4.\dfrac{1}{4}+10=9\)

b) \(B=x^3+xy-x^3-8y^3=y\left(x-8y^2\right)\)

\(=\left(-2\right).\left(32-32\right)=0\)

17 tháng 10 2021

a: Ta có: \(A=\left(2x-1\right)^2+\left(3-2x\right)\left(3+2x\right)\)

\(=4x^2-4x+1+9-4x^2\)

\(=-4x+10\)

\(=-4\cdot\dfrac{1}{4}+10=-1+10=9\)

a, \(A=x^3y\left(x^4-y^3\right)-x^2y\left(x^5-y^3\right)\)

\(=x^7y-x^3y^4-x^7y+x^2y^3\)

\(=-x^3y^4+x^2y^3\)

\(=-x^2y^3\left(xy+1\right)\)

Thay x = -1 ; y = 2 ta có: 

\(-\left(-1\right)^2.2^3\left(\left(-1\right).2+1\right)=-1.8\left(-2+1\right)=-8.-1=8\)

b, \(B=x^3y^3\left(x^4-y^4\right)-x^3y^4\left(x^2-y^3\right)\)

\(=x^7y^3-x^3y^7-x^5y^6+x^3y^7\)

\(=x^7y^3-x^5y^6\)

\(=x^5y^3\left(x^2-y^3\right)\)

Thay x=1 ; y =2 ta có : 

\(1^5.2^3\left(1^2-2^3\right)=1.8\left(1-8\right)=8.\left(-7\right)=-56\)

20 tháng 12 2020

a/ \(A=20x^3-10x^2+5x-20x^3+10x^2+4x=9x\)

Thay x = 15 vào bt A ta có

A = 9 . 15 = 135

b/ \(B=5x^2-20xy-4y^2+2xy=5x^2-4y^2\)

Thay x = -1/5 ; y = - 1/2 vào bt B ta có

\(B=5.\dfrac{1}{25}-4.\dfrac{1}{4}=\dfrac{1}{5}-1=-\dfrac{4}{5}\)

c/ \(C=6x^2y^2-6xy^3-8x^3+8x^2y^2-5x^2y^2+5xy^3\)

\(=9x^2y^2-xy^3-8x^3\)

Thay x = 1/2 ; y = 2 vào bt C ta có

\(C=9.4.\dfrac{1}{4}-\dfrac{1}{2}.8-8.\dfrac{1}{8}=9-4-1=4\)

d/ \(D=6x^2+10x-3x-5+6x^2-3x+8x-2\)

\(=12x^2+12x-3\)

\(\left|x\right|=2\Rightarrow x=\pm2\)

Thay x = 2 vào bt D có

\(D=12.4+12.2-3=69\)

Thay x = - 2 vào bt D ta có

\(D=12.4-12.2-3=21\)