Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho phân thức \(A=\frac{x^5+2x^4+2x^3-4x^2+3x+6}{x^2+2x-8}\)
a) Tìm tập xác định của A
b) Tìm các giá trị của x để A = 0
c) Rút gọn A
\(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
\(=\frac{\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
\(=\frac{\left(a+b+c\right)^3\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b\right)-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
\(=\frac{\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc-c^2\right)-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-bc-ca}\)
\(=\frac{\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc-c^2-3ab\right)}{a^2+b^2+c^2-ab-bc-ca}\)
\(=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2-ab-bc-ca}\)
\(=a+b+c\)
- Phân tích ra nhân tử :
\(a^3+b^3+c^3-3abc=a^3+b^3+c^3+3a^2b-3ab^2+3ab^2-3ab^2-3abc\)\(=a^3+3a^2b+3ab^2+b^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\right]\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
Từ đây ta có \(A=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)}{a^2+b^2+c^2-ab-bc-ac}\)
\(\Rightarrow A=a+b+c\)
Sửa đề:
\(\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)+\left(ab+bc+ca\right)\left(a+b+c\right)}{\left(a+b+c\right)^2-\left(ab+bc+ca\right)}\)
\(=\frac{\left(a^2+b^2+c^2+ab+bc+ca\right)\left(a+b+c\right)}{a^2+b^2+c^2+2ab+2bc+2ca-\left(ab+bc+ca\right)}\)
\(=\frac{\left(a^2+b^2+c^2+ab+bc+ca\right)\left(a+b+c\right)}{a^2+b^2+c^2+ab+bc+ca}\)
\(=a+b+c\left(a^2+b^2+c^2+ab+bc+ca\ne0\right)\)
cảm ơn anh để em xem lại