Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right)...\left(21^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right)...\left(23^4+4\right)}\)\(=\frac{\left(1+4\right)\left(4^2+1\right)\left(6^2+1\right)\left(8^2+1\right)\left(10^2+1\right)...\left(20^2+1\right)\left(\cdot22^2+1\right)}{\left(2^2+1\right)\left(4^2+1\right)\left(6^2+1\right)\left(8^2+1\right)\left(10^2+1\right)\left(12^2+1\right)...\left(22^2+1\right)\left(24^2+1\right)}\)
\(=\frac{1+4}{\left(2^2+1\right)\left(24^2+1\right)}=\frac{5}{5\left(24^2+1\right)}=\frac{1}{24^2+1}=\frac{1}{577}\)
cái bước tách ra bn nhân lại là có kết quả y chang, VD:
\(\left(5^4+4\right)=\left(4^2+1\right)\left(6^2+1\right)=629\)
ta co dang tong quat cho tu so la : n^4+4=(n^2+2)^2=(n^2+2n+2)(n^2-2n+2)=[(n-1)^2+1][(n+1)^2+1]
Nen A=(0+1)(2^2+1)/(2^2+1)(4^2+1) . (4^2+1)(6^2+1)/(6^2+1)(8^2+1) .........(20^2+1)(22^2+1)/(22^2+1)(24^2+1) = 1/24^2+1=1/577
A = \(\dfrac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right)...\left(21^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right)...\left(23^4+4\right)}\)
Xét: n4 + 4 = (n2+2)2 - 4n2 = (n2-2n+2)(n2+2n+2) = [(n-1)2+1][(x+1)2+1] nên: A = \(\dfrac{\left(0^2+1\right)\left(2^2+1\right)}{\left(2^2+1\right)\left(4^2+1\right)}.\dfrac{\left(4^2+1\right)\left(6^2+1\right)}{\left(6^2+1\right)\left(8^2+1\right)}.....\dfrac{\left(20^2+1\right)\left(22^2+1\right)}{\left(22^2+1\right)\left(24^2+1\right)}=\dfrac{1}{24^2+1}=\dfrac{1}{577}\)
B = \(\left(\dfrac{n-1}{1}+\dfrac{n-2}{2}+...+\dfrac{2}{n-2}+\dfrac{1}{n-1}\right):\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{n}\right)\)
Đặt C = \(\dfrac{n-1}{1}+\dfrac{n-2}{2}+...+\dfrac{n-\left(n-2\right)}{n-2}+\dfrac{n-\left(n-1\right)}{n-1}\)
= \(\dfrac{n}{1}+\dfrac{n}{2}+...+\dfrac{n}{n-2}+\dfrac{n}{n-1}-1-1-...-1\)
= \(n+\dfrac{n}{2}+\dfrac{n}{3}+...+\dfrac{n}{n-1}-\left(n-1\right)\)
= \(\dfrac{n}{2}+\dfrac{n}{3}+...+\dfrac{n}{n-1}+\dfrac{n}{n}\)
= \(n\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{n}\right)\)
Vậy ...