Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(90.10^k-10^{k+2}+10^{k+1}\)
\(=90.10^k-10^k.10^2+10^k.10\)
\(=10^k\left(90-10^2+10\right)\)
\(=10^k.0=0\)
b) Ta có:
\(2,5.5^{n-3}.10+5^n-6.5^{n-1}\)
\(=2,5.10.5^{n-3}+5^n-6.5^{n-1}\)
\(=5.5.5^{n-3}+5^n-6.5^{n-1}\)
\(=5^2.5^{n-3}+5^n-6.5^{n-1}\)
\(=5^{n-3+2}+5^n-6.5^{n-1}\)
\(=5^{n-1}\left(1+5-6\right)\)
\(=5^{n-1}.0=0\)
a) Rút gọn biểu thức:
\(90\times10^k-10^{k+2}+10^{k+1}=90\times10^k-10^k\times10^2+10^k\times10\) \(=10^k\times\left(90-10^2+10\right)\) \(=10^k\times\left(90-100+10\right)\) \(=10^k\times0=0\)
b) Rút gọn biểu thức:
\(2,5\times5^{n-3}\times10+5^n-6\times5^{n-1}=2,5\times\dfrac{5^n}{5^3}\times10+5^n-6\times\dfrac{5^n}{5}\) \(=2,5\times\dfrac{5^n}{125}\times10+5^n-\dfrac{6}{5}\times5^n\) \(=0,2\times5^n+5^n-1,2\times5^n\) \(=5^n\times\left(0,2+1-1,2\right)=5^n\times0=0\)
\(d,2,5.5^{n-3}.2.5+5^n-6.5^{n-1}=5.5.5^{n-3}+5^n-6.5^{n-1}=5^2.5^{n-3}+5^n-6.5^{n-1}\)
\(=5^{n-3+2}+5^n-6.5^{n-1}=5^{n-1}\left(1+5-6\right)=5^{n-1}.0=0\)
a, \(10^{n+1}-6.10^n=10^n\left(10-6\right)=4.10^n\)
b. \(2^{n+3}+2^{n+2}-2^{n+1}+2^n=2^n\left(2^3+2^2-2+1\right)=2^n\left(8+4-2+1\right)=11.2^n\)
a: \(10^{n+1}=10^n\cdot10\)
b: \(2^{n+3}+2^{n+1}-2^{n+1}+2^n\)
\(=2^n\cdot8+2^n=9\cdot2^n\)
c: \(90\cdot10^k-10^{k+2}+10^{k+1}\)
\(=90\cdot10^k+10^k\cdot10-10^k\cdot100=0\)
\(2,5.5^{n-3}.10+5^n-6.5^{n-1}\)
=25.\(5^n\):3+\(5^n\)\(-\)6.\(5^n\):5
=\(\dfrac{25}{3}\).\(5^n\)+\(5^n\)\(-\)\(\dfrac{6}{5}\).\(5^n\)
=\(5^n\).\(\left(\dfrac{25}{3}+1-\dfrac{6}{5}\right)\)
=\(5^n\).\(\dfrac{158}{15}\)
Ta có: 2,5.5n-3.10+5n-6.5n-1
= (2.5 + 1-6).5n-30-1
= -2.5.5n - 31.
tks