K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2017

2(x – y)(x + y) +  x + y 2  +  x - y 2

=  x + y 2  +2( x+ y).(x- y) + x - y 2

(áp dụng hằng đẳng thức thứ 1với A = x+ y, B = x- y)

= x + y + x - y 2 = 2 x 2 = 4 x 2

AH
Akai Haruma
Giáo viên
10 tháng 10 2021

Lời giải:

$x(x+y)-y(x+y)+x^2+y^2=(x-y)(x+y)+x^2+y^2$

$=x^2-y^2+x^2+y^2=2x^2$

1 tháng 11 2021

\(A=\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)-4\left(y^2-1\right)\)

   \(=\left(x-y-x-y\right)^2-4\left(y^2-1\right)\)

   \(=\left(-2y\right)^2-4y^2+4=4\)

1 tháng 8 2019

(x + y + z)2 – 2.(x + y + z).(x + y) + (x + y)2

= [(x + y + z) – (x + y)]2 (Áp dụng HĐT (2) với A = x + y + z ; B = x + y)

= z2.

30 tháng 8 2016

= 2(x^2-y^2) + x^2 + 2xy + y^2+x^2-2xy+y^2 
= 2x^2 - 2y^2 + x^2 + 2xy + y^2 + x^2 - 2xy + y^2 
= 4x^2

30 tháng 8 2016

Theo mình là :

2 ( x-y )(x+y)+(x+y)2+(x-y)2 = (2x-2y) (x+y) + (x+y)(x+y) + (x-y)(x-y)

                                        = (x-y)(x+y) + x2+y2 + x2 - 2xy + y2

                                        = x2 - y2 + x2 +y+ (x-y)2

DT
19 tháng 6 2023

\(\left(a\right):\left(x+y\right)^2-\left(x-y\right)^2=x^2+2xy+y^2-\left(x^2-2xy+y^2\right)\\ =x^2+2xy+y^2-x^2+2xy-y^2\\ =4xy\)

\(\left(b\right):\left(x-y-z\right)^2+\left(x+y+z\right)^2\\ =\left[\left(x-y\right)-z\right]^2+\left[\left(x+y\right)+z\right]^2\\ =\left(x-y\right)^2-2z\left(x-y\right)+z^2+\left(x+y\right)^2+2z\left(x+y\right)+z^2\\ =x^2-2xy+y^2-2xz+2yz+z^2+x^2+2xy+y^2+2xz+2yz+z^2\\ =2x^2+2y^2+2z^2+4yz\)

\(\left(c\right):\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =\left(2y\right)^2=4y^2\)

25 tháng 7 2016

\(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2=\left(x+y+x-y\right)^2=\left(2x\right)^2=4x^2\)

25 tháng 5 2019

x + y 2 + x - y 2

= x 2  + 2xy + y 2  +  x 2  – 2xy +  y 2

= 2 x 2  + 2 y 2

18 tháng 11 2021

\(D=\dfrac{\left(x^2-y^2\right)\left(x+y\right)}{x}+\dfrac{y^2\left(x+y\right)}{x}\\ D=\dfrac{\left(x^2-y^2\right)\left(x+y\right)+y^2\left(x+y\right)}{x}\\ D=\dfrac{\left(x+y\right)\left(x^2-y^2+y^2\right)}{x}=\dfrac{x^2\left(x+y\right)}{x}=x\left(x+y\right)\)