Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)-4\left(y^2-1\right)\)
\(=\left(x-y-x-y\right)^2-4\left(y^2-1\right)\)
\(=\left(-2y\right)^2-4y^2+4=4\)
(x + y + z)2 – 2.(x + y + z).(x + y) + (x + y)2
= [(x + y + z) – (x + y)]2 (Áp dụng HĐT (2) với A = x + y + z ; B = x + y)
= z2.
= 2(x^2-y^2) + x^2 + 2xy + y^2+x^2-2xy+y^2
= 2x^2 - 2y^2 + x^2 + 2xy + y^2 + x^2 - 2xy + y^2
= 4x^2
Theo mình là :
2 ( x-y )(x+y)+(x+y)2+(x-y)2 = (2x-2y) (x+y) + (x+y)(x+y) + (x-y)(x-y)
= (x-y)(x+y) + x2+y2 + x2 - 2xy + y2
= x2 - y2 + x2 +y2 + (x-y)2
\(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2=\left(x+y+x-y\right)^2=\left(2x\right)^2=4x^2\)
\(\left(a\right):\left(x+y\right)^2-\left(x-y\right)^2=x^2+2xy+y^2-\left(x^2-2xy+y^2\right)\\ =x^2+2xy+y^2-x^2+2xy-y^2\\ =4xy\)
\(\left(b\right):\left(x-y-z\right)^2+\left(x+y+z\right)^2\\ =\left[\left(x-y\right)-z\right]^2+\left[\left(x+y\right)+z\right]^2\\ =\left(x-y\right)^2-2z\left(x-y\right)+z^2+\left(x+y\right)^2+2z\left(x+y\right)+z^2\\ =x^2-2xy+y^2-2xz+2yz+z^2+x^2+2xy+y^2+2xz+2yz+z^2\\ =2x^2+2y^2+2z^2+4yz\)
\(\left(c\right):\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =\left(2y\right)^2=4y^2\)
x + y 2 + x - y 2
= x 2 + 2xy + y 2 + x 2 – 2xy + y 2
= 2 x 2 + 2 y 2
\(D=\dfrac{\left(x^2-y^2\right)\left(x+y\right)}{x}+\dfrac{y^2\left(x+y\right)}{x}\\ D=\dfrac{\left(x^2-y^2\right)\left(x+y\right)+y^2\left(x+y\right)}{x}\\ D=\dfrac{\left(x+y\right)\left(x^2-y^2+y^2\right)}{x}=\dfrac{x^2\left(x+y\right)}{x}=x\left(x+y\right)\)
Lời giải:
$x(x+y)-y(x+y)+x^2+y^2=(x-y)(x+y)+x^2+y^2$
$=x^2-y^2+x^2+y^2=2x^2$